American Association for Cancer Research
Browse
- No file added yet -

Supplementary Data from Carcinoma-Associated Fibroblast–Like Differentiation of Human Mesenchymal Stem Cells

Download (10.14 kB)
journal contribution
posted on 2023-03-30, 18:22 authored by Pravin J. Mishra, Prasun J. Mishra, Rita Humeniuk, Daniel J. Medina, Gabriela Alexe, Jill P. Mesirov, Sridhar Ganesan, John W. Glod, Debabrata Banerjee
Supplementary Data from Carcinoma-Associated Fibroblast–Like Differentiation of Human Mesenchymal Stem Cells

History

ARTICLE ABSTRACT

Carcinoma-associated fibroblasts (CAF) have recently been implicated in important aspects of epithelial solid tumor biology, such as neoplastic progression, tumor growth, angiogenesis, and metastasis. However, neither the source of CAFs nor the differences between CAFs and fibroblasts from nonneoplastic tissue have been well defined. In this study, we show that human bone marrow–derived mesenchymal stem cells (hMSCs) exposed to tumor-conditioned medium (TCM) over a prolonged period of time assume a CAF-like myofibroblastic phenotype. More importantly, these cells exhibit functional properties of CAFs, including sustained expression of stromal-derived factor-1 (SDF-1) and the ability to promote tumor cell growth both in vitro and in an in vivo coimplantation model, and expression of myofibroblast markers, including α-smooth muscle actin and fibroblast surface protein. hMSCs induced to differentiate to a myofibroblast-like phenotype using 5-azacytidine do not promote tumor cell growth as efficiently as hMSCs cultured in TCM nor do they show increased SDF-1 expression. Furthermore, gene expression profiling revealed similarities between TCM-exposed hMSCs and CAFs. Taken together, these data suggest that hMSCs are a source of CAFs and can be used in the modeling of tumor-stroma interactions. To our knowledge, this is the first report showing that hMSCs become activated and resemble carcinoma-associated myofibroblasts on prolonged exposure to conditioned medium from MDAMB231 human breast cancer cells. [Cancer Res 2008;68(11):4331–9]

Usage metrics

    Cancer Research

    Categories

    Keywords

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC