American Association for Cancer Research
10780432ccr082878-sup-supplementary_data.pdf (7.27 kB)

Supplementary Data from Activation of Phosphatidylinositol-3′-kinase/AKT Signaling Is Essential in Hepatoblastoma Survival

Download (7.27 kB)
journal contribution
posted on 2023-03-31, 15:46 authored by Wolfgang Hartmann, Jan Küchler, Arend Koch, Nicolaus Friedrichs, Anke Waha, Elmar Endl, Jacqueline Czerwitzki, Dagmar Metzger, Susanne Steiner, Peter Wurst, Ivo Leuschner, Dietrich von Schweinitz, Reinhard Buettner, Torsten Pietsch
Supplementary Data from Activation of Phosphatidylinositol-3′-kinase/AKT Signaling Is Essential in Hepatoblastoma Survival



Purpose: Hepatoblastoma represents the most frequent malignant liver tumor in childhood. The phosphatidylinositol-3′-kinase (PI3K)/AKT pathway is crucial in downstream signaling of multiple receptor tyrosine kinases of pathogenic importance in hepatoblastoma. Increased PI3K/AKT signaling pathway activity and activating mutations of PIK3CA, encoding a PI3K catalytic subunit, have been reported in different childhood tumors. The current study was done to analyze the role of PI3K/AKT signaling in hepatoblastoma.Experimental Design: Immunohistochemical stainings of (Ser473)-phosphorylated (p)-AKT protein, its targets p-(Ser9)-GSK-3β and p-(Ser2448)-mTOR, as well as the cell cycle regulators Cyclin D1, p27KIP1, and p21CIP1 were done and the PIK3CA gene was screened for mutations. In vitro, two hepatoblastoma cell lines treated with the PI3K inhibitor LY294002 were analyzed for AKT and GSK-3β phosphorylation, cell proliferation, and apoptosis. Additionally, simultaneous treatments of hepatoblastoma with LY294002 and cytotoxic drugs were carried out.Results: Most tumors strongly expressed p-AKT, p-GSK-3β, and p-mTOR; subgroups showed significant Cyclin D1, p27KIP1, and p21CIP1 expression. One hepatoblastoma carried an E545A mutation in the PIK3CA gene. In vitro, PI3K inhibition diminished hepatoblastoma cell growth being accompanied by reduced AKT and GSK-3β phosphorylation. Flow cytometry and 4', 6-diamidino-2-phenylindole stainings showed that PI3K pathway inhibition leads to a substantial increase in apoptosis and a decrease in cellular proliferation linked to reduced Cyclin D1 and increased p27KIP1 levels. Simultaneous treatment of hepatoblastoma cell lines with LY294002 and cytotoxic drugs resulted in positive interactions.Conclusions: Our findings imply that PI3K signaling plays an essential role in growth control of hepatoblastoma and might be successfully targeted in multimodal therapeutic strategies.