Supplementary Data from A Novel Human Her-2/neu Chimeric Molecule Expressed by Listeria monocytogenes Can Elicit Potent HLA-A2 Restricted CD8-positive T cell Responses and Impact the Growth and Spread of Her-2/neu-positive Breast Tumors
posted on 2023-03-31, 15:42authored byMatthew M. Seavey, Zhen-Kun Pan, Paulo C. Maciag, Anu Wallecha, Sandra Rivera, Yvonne Paterson, Vafa Shahabi
Supplementary Data from A Novel Human Her-2/neu Chimeric Molecule Expressed by Listeria monocytogenes Can Elicit Potent HLA-A2 Restricted CD8-positive T cell Responses and Impact the Growth and Spread of Her-2/neu-positive Breast Tumors
History
ARTICLE ABSTRACT
Purpose: The aim of this study was to efficiently design a novel vaccine for human Her-2/neu-positive (hHer-2/neu) breast cancer using the live, attenuated bacterial vector Listeria monocytogenes.Experimental Design: Three recombinant L. monocytogenes–based vaccines were generated that could express and secrete extracellular and intracellular fragments of the hHer-2/neu protein. In addition, we generated a fourth construct fusing selected portions of each individual fragment that contained most of the human leukocyte antigen (HLA) epitopes as a combination vaccine (L. monocytogenes–hHer-2/neu chimera).Results: Each individual vaccine was able to either fully regress or slow tumor growth in a mouse model for Her-2/neu-positive tumors. All three vaccines could elicit immune responses directed toward human leukocyte antigen-A2 epitopes of hHer-2/neu. The L. monocytogenes–hHer-2/neu chimera was able to mimic responses generated by the three separate vaccines and prevent spontaneous outgrowth of tumors in an autochthonous model for Her-2/neu-positive breast cancer, induce tumor regression in transplantable models, and prevent seeding of experimental lung metastases in a murine model for metastatic breast cancer.Conclusion: This novel L. monocytogenes–hHer-2/neu chimera vaccine proves to be just as effective as the individual vaccines but combines the strength of all three in a single vaccination. These encouraging results support future clinical trials using this chimera vaccine and may be applicable to other cancer types expressing the Her-2/neu molecule such as colorectal and pancreatic cancer.