American Association for Cancer Research
Browse

Supplementary Data from A New Immunostain Algorithm Classifies Diffuse Large B-Cell Lymphoma into Molecular Subtypes with High Accuracy

Download (382.85 kB)
journal contribution
posted on 2023-03-31, 15:44 authored by William W.L. Choi, Dennis D. Weisenburger, Timothy C. Greiner, Miguel A. Piris, Alison H. Banham, Jan Delabie, Rita M. Braziel, Huimin Geng, Javeed Iqbal, Georg Lenz, Julie M. Vose, Christine P. Hans, Kai Fu, Lynette M. Smith, Min Li, Zhongfeng Liu, Randy D. Gascoyne, Andreas Rosenwald, German Ott, Lisa M. Rimsza, Elias Campo, Elaine S. Jaffe, David L. Jaye, Louis M. Staudt, Wing C. Chan
Supplementary Data from A New Immunostain Algorithm Classifies Diffuse Large B-Cell Lymphoma into Molecular Subtypes with High Accuracy

History

ARTICLE ABSTRACT

Purpose: Hans and coworkers previously developed an immunohistochemical algorithm with ∼80% concordance with the gene expression profiling (GEP) classification of diffuse large B-cell lymphoma (DLBCL) into the germinal center B-cell–like (GCB) and activated B-cell–like (ABC) subtypes. Since then, new antibodies specific to germinal center B-cells have been developed, which might improve the performance of an immunostain algorithm.Experimental Design: We studied 84 cases of cyclophosphamide-doxorubicin-vincristine-prednisone (CHOP)–treated DLBCL (47 GCB, 37 ABC) with GCET1, CD10, BCL6, MUM1, FOXP1, BCL2, MTA3, and cyclin D2 immunostains, and compared different combinations of the immunostaining results with the GEP classification. A perturbation analysis was also applied to eliminate the possible effects of interobserver or intraobserver variations. A separate set of 63 DLBCL cases treated with rituximab plus CHOP (37 GCB, 26 ABC) was used to validate the new algorithm.Results: A new algorithm using GCET1, CD10, BCL6, MUM1, and FOXP1 was derived that closely approximated the GEP classification with 93% concordance. Perturbation analysis indicated that the algorithm was robust within the range of observer variance. The new algorithm predicted 3-year overall survival of the validation set [GCB (87%) versus ABC (44%); P < 0.001], simulating the predictive power of the GEP classification. For a group of seven primary mediastinal large B-cell lymphoma, the new algorithm is a better prognostic classifier (all “GCB”) than the Hans' algorithm (two GCB, five non-GCB).Conclusion: Our new algorithm is significantly more accurate than the Hans' algorithm and will facilitate risk stratification of DLBCL patients and future DLBCL research using archival materials. (Clin Cancer Res 2009;15(17):5494–502)

Usage metrics

    Clinical Cancer Research

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC