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Supplementary Figure 1. Cumulative incidence of regional recurrence in the entire cohort. 

 

 



Supplementary Table 1. Representativeness of Study Participants 

Cancer type Head and neck squamous cell carcinoma 

Sex The ratio for human papillomavirus (HPV)-positive head and neck 

squamous cell carcinoma (HNSCC) incidence in males versus 

females is in the range of 3–6. (1) 

Age In a well-established study of oropharyngeal cancer, the median age 

at diagnosis for HPV-associated oropharyngeal cancer is 

approximately 57 years, while the median age of diagnosis for non-

HPV associated oropharyngeal cancer was 61 years. (2)  

Race/ethnicity From 1992 through 2014, the overall incidence rate of HNSCC per 

100,000 persons per year in the US was 11.2, ranging from 6.8 

(Asian non-Hispanic) to 7.2 (Hispanic), to 12.2 (White non-

Hispanic) to 14.3 (Black non-Hispanic). The comparative numbers 

for oropharyngeal squamous cell carcinoma were 3.4 (overall), 1.2 

(Asian non-Hispanic), 1.9 (Hispanic), 4.0 (White non-Hispanic), 

and 4.4 (Black non-Hispanic). However, by 2014, the incidence 

rates for both any HNSCC and oropharyngeal cancer were highest 

in White individuals. (3)  

Geography In 2018, there were approximately 52,000 cases of head and neck 

cancer in the United States and approximately 10,000 deaths from 

the disease. Worldwide, there are 890,000 new cases and 450,000 

deaths from head and neck cancer. (4) 

Overall representativeness of 

this study 

The median age of patients in our study was 62 years, with the 

population 79% male. In total, 72% of the cohort was comprised of 

oropharynx cancer. These numbers track with the general 

presentation of head and neck cancer in the country. However, the 

vast majority of patients (91%) were white, which to some extent 

limits generalizability of the results. However, it is unlikely that the 

probability of occult nodal disease differs by race.    
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Supplementary Methods 

Dataset for lymph node malignancy prediction 

In order to define a “ground truth” of the malignancy status of a lymph node, we used 

pathology results from patients with head and neck squamous cell carcinoma of the oropharynx, 

larynx and hypopharynx who underwent neck dissection from 8/2011 to 5/2018 at our institution. 

Preoperative CT and PET-CT from these patients were imported and fused in our contouring 

system (Velocity, Varian Medical Systems, Palo Alto, CA), and each individual lymph node was 

contoured and associated with its pathology result. Association of the preoperative imaging and 

pathologic diagnosis was facilitated by our surgical standard of labeling each lymph node station 

during resection; if a diagnosis was uncertain, that lymph node was not included for model 

generation.    

We developed three separate AI models to predict a lymph node's malignancy status 

based on these contours. One model was created to analyze the simulation CT and fused PET 

imaging and included all patients with preoperative PET-CT. However, not every patient in the 

training set received a PET-CT prior to surgery, and the information within smaller nodes is 

presumably contained mostly within the CT data. Therefore, we also generated two disease-

specific CT-only models (oropharynx and larynx/hypopharynx).  

AI-based Lymph Node Malignancy Prediction Model  

 The lymph node malignancy prediction models integrate outputs from a multi-objective 

radiomics (MO-Radiomics) model that utilizes handcrafted imaging features and a convolutional 

neural network (CNN) that relies on learned features from PET and CT.  



MO-radiomics model: The MO-radiomics model includes the following three key steps: 

1) Quantitative imaging feature extraction from PET and CT images; 2) Predictive model 

construction and training using an iterative multi-objective immune algorithm; 3) Selection of an 

optimal solution. In MO-Radiomics, imaging features including intensity, texture, and geometric 

features were extracted from physician-contoured lymph nodes in PET and CT images. Intensity 

features include minimum, maximum, mean, stand deviation, sum, median, skewness, kurtosis, 

and variance. Geometry features include volume, major diameter, minor diameter, eccentricity, 

elongation orientation, bounding box volume, and perimeter. Texture features are based on 3D 

gray-level co-occurrence (GLCM) and gray level run-length (GLRL), which are extracted as 

follows: energy, entropy, correlation, contrast, texture variance, sum-mean, inertia, cluster shade, 

cluster prominence, homogeneity, max-probability, and inverse variance. A total of 257 features 

were extracted for PET and CT images. We used the support vector machine (SVM) to construct 

the predictive model with parameters denoted by 𝛼 = [𝛼1, ⋯ , 𝛼𝑀]; 𝑀 is the number of model 

parameters. Features extracted from PET, and CT are denoted by 𝛽 = [𝛽1, ⋯ , 𝛽𝑁], where 𝑁 is 

the number of features. The goal of the MO-radiomics model is to maximize sensitivity (𝑓𝑠𝑒𝑛) 

and specificity (𝑓𝑠𝑝𝑒) simultaneously to obtain the Pareto-optimal set: 𝑓 = max
𝛼,𝛽

(𝑓𝑠𝑒𝑛, 𝑓𝑠𝑝𝑒). To 

solve the MO-radiomics optimization problem, we developed a multi-objective optimization 

algorithm1. During the model optimization, feature selection and model parameters training were 

performed simultaneously. The first phase of the optimization is to generate a Pareto-optimal 

solution set.  The individual in all feasible solutions was sorted in descending order using a fast 

non-dominated sorting approach2 according to the AUC of each solution and the final solution 

was selected with the highest AUC in MO-radiomics.  



CNN-based model: For each lymph node, we use a cropped volume with dimensions of 

64x64x48 in voxel size (equivalent to 32x32x24 mm3) containing the lymph node from contrast-

enhanced CT and PET-based imaging. This size was specifically selected to encompass the 

largest lymph node and its surrounding tissue. In this context, the term "surrounding tissues" 

refers to any tissues located within a 10-voxel expansion in all three dimensions surrounding the 

largest lymph node. Since all lymph nodes are contoured for MO-Radiomics modeling, the 

centroid of the contoured LN is used to define the center of the bounding box, which has a size 

of 64x64x48 voxels. Data augmentation was performed by a 3D rotation of [330°:30°] along a 

random axe of the three axes. The CNN architecture includes 12 convolutional layers, 2 max 

pooling layers, and 2 fully connected layers. Instead of using 2D convolutional kernels for image 

classification, our CNN uses 3D kernels in all convolutional layers. For CT-only model, the 

input of the network is a volumetric image. When we use PET and contrast-enhanced CT 

together, the input of the network contains two volumetric images, and each volumetric image 

serves as one channel of the input. The categorical cross entropy was the loss function.  

Integrated model combining MO-Radiomics and CNN 

Manually extracted features and automatically learned features can be complementary as 

demonstrated in several studies3,4, including ours5,6. As such, a strategy that combined both 

handcrafted and learning models was used to predict the final lymph node malignancy in this 

study. The analytical evidential reasoning approach1 was used to compute the final output 

probabilities for testing samples, by fusing the output probabilities generated by both the MO-

Radiomics and CNN models. This approach involved combining belief degrees and weighting 

factors of the two models to generate basic probability assignments, which were then normalized 



using a normalization constant to a range of [0,1]. Weighting factors of each model for fusion 

were calculated based on the model performance measured by AUC on the validation set. 

Performance of AI-based lymph node malignancy classification models 

For the generation of the combined PET-CT and CT lymph node prediction model, a total 

of 791 lymph nodes from 129 patients were labeled as malignant or benign. Approximately 20% 

of the lymph nodes were malignant. The final PET-CT model was trained on lymph nodes from 

80% of the patients; its performance on the remaining data (170 lymph nodes), measured via 

sensitivity, specificity, accuracy, and area under the receiver operating characteristic curve 

(AUROC), was 0.93, 0.85, 0.86, and 0.97, respectively. For the 146 (86% of total cohort) lymph 

nodes with cross-section diameter less than 17mm (primary criterion for AI-evaluated nodes in 

the trial), the model achieved 0.88, 0.86, 0.86, and 0.94 for sensitivity, specificity, accuracy and 

AUROC, respectively. 

The CT-only oropharynx model used data from 78 patients and was trained and tuned in 

a similar manner as above using the same data, excluding the PET-CT imaging. The final 

sensitivity, specificity, accuracy, and AUROC were 0.93, 0.86, 0.87, and 0.94, respectively. For 

146 (86%) lymph nodes with cross-sectional diameter less than 17 mm, the model achieved 0.88, 

0.88, 0.88, and 0.88 for sensitivity, specificity, accuracy and AUROC, respectively.  The CT-

only larynx/hypopharynx model was initialized using the CT-only oropharynx model's weights 

as a baseline but was later fine-tuned with 51 patients with larynx/hypopharynx cancer who had 

preoperative CT imaging. A total of 386 lymph nodes were labeled, approximately 10% of which 

were malignant. Fifty percent of the larynx patients was used for training and hyperparameter 

selection, and 50% of patients (with 194 lymph nodes) were used for the final validation. The 



final sensitivity, specificity, accuracy, and AUROC were 0.96, 0.84, 0.85, and 0.92, respectively. 

For the 170 (88%) lymph nodes with cross-section diameter less than 17mm, the model achieved 

0.90, 0.86, 0.86, and 0.86 for sensitivity, specificity, accuracy and AUROC, respectively. 

The combined AUROC performance of the entire cohort is shown in Figure 1(a) below, 

and the performance in the lymph nodes whose cross-sectional diameter is less than 17 mm is 

seen in Figure 1(b): 
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