American Association for Cancer Research
Browse

Supplemental legend from BMI1 Drives Metastasis of Prostate Cancer in Caucasian and African-American Men and Is A Potential Therapeutic Target: Hypothesis Tested in Race-specific Models

Download (32.15 kB)
journal contribution
posted on 2023-03-31, 20:30 authored by Arsheed A. Ganaie, Firdous H. Beigh, Matteo Astone, Marina G. Ferrari, Raihana Maqbool, Syed Umbreen, Aijaz S. Parray, Hifzur R. Siddique, Tabish Hussain, Paari Murugan, Colm Morrissey, Shahriar Koochekpour, Yibin Deng, Badrinath R. Konety, Luke H. Hoeppner, Mohammad Saleem

Supplemental legend

Funding

PHS

DOD

Department of Defense Prostate Cancer Research Program

Department of the Pacific Northwest Prostate Cancer

NIH

History

ARTICLE ABSTRACT

Metastasis is the major cause of mortality in prostate cancer patients. Factors such as genetic makeup and race play critical role in the outcome of therapies. This study was conducted to investigate the relevance of BMI1 in metastatic prostate cancer disease in Caucasian and African-Americans. We employed race-specific prostate cancer models, clinical specimens, clinical data mining, gene-microarray, transcription-reporter assay, chromatin-immunoprecipitation (ChIP), IHC, transgenic-(tgfl/fl) zebrafish, and mouse metastasis models. BMI1 expression was observed to be elevated in metastatic tumors (lymph nodes, lungs, bones, liver) of Caucasian and African-American prostate cancer patients. The comparative analysis of stage III/IV tumors showed an increased BMI1 expression in African-Americans than Caucasians. TCGA and NIH/GEO clinical data corroborated to our findings. We show that BMI1 expression (i) positively correlates to metastatic (MYC, VEGF, cyclin D1) and (ii) negative correlates to tumor suppressor (INKF4A/p16, PTEN) levels in tumors. The correlation was prominent in African-American tumors. We show that BMI1 regulates the transcriptional activation of MYC, VEGF, INKF4A/p16, and PTEN. We show the effect of pharmacological inhibition of BMI1 on the metastatic genome and invasiveness of tumor cells. Next, we show the anti-metastatic efficacy of BMI1-inhibitor in transgenic zebrafish and mouse metastasis models. Docetaxel as monotherapy has poor outcome on the growth of metastatic tumors. BMI1 inhibitor as an adjuvant improved the taxane therapy in race-based in vitro and in vivo models. BMI1, a major driver of metastasis, represents a promising therapeutic target for treating advanced prostate cancer in patients (including those belonging to high-risk group).

Usage metrics

    Clinical Cancer Research

    Categories

    Keywords

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC