American Association for Cancer Research
Browse

Supplemental Table and Figure Legends from Chaperone Hsp47 Drives Malignant Growth and Invasion by Modulating an ECM Gene Network

Download (18.19 kB)
journal contribution
posted on 2023-03-30, 23:25 authored by Jieqing Zhu, Gaofeng Xiong, Hanjiang Fu, B. Mark Evers, Binhua P. Zhou, Ren Xu

Supplemental Table and Figure Legends. Legends for Supplemental Table S1 and Supplemental Figures S1-S4.

History

ARTICLE ABSTRACT

The extracellular matrix (ECM) is a determining factor in the tumor microenvironment that restrains or promotes malignant growth. In this report, we show how the molecular chaperone protein Hsp47 functions as a nodal hub in regulating an ECM gene transcription network. A transcription network analysis showed that Hsp47 expression was activated during breast cancer development and progression. Hsp47 silencing reprogrammed human breast cancer cells to form growth-arrested and/or noninvasive structures in 3D cultures, and to limit tumor growth in xenograft assays by reducing deposition of collagen and fibronectin. Coexpression network analysis also showed that levels of microRNA(miR)-29b and -29c were inversely correlated with expression of Hsp47 and ECM network genes in human breast cancer tissues. We found that miR-29 repressed expression of Hsp47 along with multiple ECM network genes. Ectopic expression of miR-29b suppressed malignant phenotypes of breast cancer cells in 3D culture. Clinically, increased expression of Hsp47 and reduced levels of miR-29b and -29c were associated with poor survival outcomes in breast cancer patients. Our results show that Hsp47 is regulated by miR-29 during breast cancer development and progression, and that increased Hsp47 expression promotes cancer progression in part by enhancing deposition of ECM proteins. Cancer Res; 75(8); 1580–91. ©2015 AACR.

Usage metrics

    Cancer Research

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC