American Association for Cancer Research
00085472can160752-sup-163578_1_supp_3586595_sskmbf.docx (102.55 kB)

Supplemental Table S1 from EpCAM-Regulated Transcription Exerts Influences on Nanomechanical Properties of Endometrial Cancer Cells That Promote Epithelial-to-Mesenchymal Transition

Download (102.55 kB)
journal contribution
posted on 2023-03-31, 00:28 authored by Ya-Ting Hsu, Pawel Osmulski, Yao Wang, Yi-Wen Huang, Lu Liu, Jianhua Ruan, Victor X. Jin, Nameer B. Kirma, Maria E. Gaczynska, Tim Hui-Ming Huang

List of primer sequences



Cancer Prevention and Research Institute of Texas

University of Texas System STAR award

Cancer Therapy and Research Center Foundation

The Max and Minnie Tomerlin Voelcker Fund




Overexpression of epithelial cell adhesion molecule (EpCAM) has been implicated in advanced endometrial cancer, but its roles in this progression remain to be elucidated. In addition to its structural role in modulating cell-surface adhesion, here we demonstrate that EpCAM is a regulatory molecule in which its internalization into the nucleus turns on a transcription program. Activation of EGF/EGFR signal transduction triggered cell-surface cleavage of EpCAM, leading to nuclear internalization of its cytoplasmic domain EpICD. ChIP-seq analysis identified target genes that are coregulated by EpICD and its transcription partner, LEF-1. Network enrichment analysis further uncovered a group of 105 genes encoding functions for tight junction, adherent, and cell migration. Furthermore, nanomechanical analysis by atomic force microscopy revealed increased softness and decreased adhesiveness of EGF-stimulated cancer cells, implicating acquisition of an epithelial–mesenchymal transition (EMT) phenotype. Thus, genome editing of EpCAM could be associated with altering these nanomechanical properties towards a less aggressive phenotype. Using this integrative genomic–biophysical approach, we demonstrate for the first time an intricate relationship between EpCAM-regulated transcription and altered biophysical properties of cells that promote EMT in advanced endometrial cancer. Cancer Res; 76(21); 6171–82. ©2016 AACR.

Usage metrics

    Cancer Research