American Association for Cancer Research
Browse
15357163mct160071-sup-162302_1_supp_3446595_25j9dy.docx (147.43 kB)

Supplemental Table 2 from Cell-Cycle Gene Alterations in 4,864 Tumors Analyzed by Next-Generation Sequencing: Implications for Targeted Therapeutics

Download (147.43 kB)
journal contribution
posted on 2023-04-03, 15:49 authored by Teresa Helsten, Shumei Kato, Maria Schwaederle, Brett N. Tomson, Timon P.H. Buys, Sheryl K. Elkin, Jennifer L. Carter, Razelle Kurzrock

Spreadsheet for the individual cancer diagnosis and the cell cycle gene aberrations (N=1918)

Funding

Joan and Irwin Jacobs philanthropic

History

ARTICLE ABSTRACT

Alterations in the cyclin-dependent kinase (CDK)-retinoblastoma (RB) machinery disrupt cell-cycle regulation and are being targeted in drug development. To understand the cancer types impacted by this pathway, we analyzed frequency of abnormalities in key cell-cycle genes across 4,864 tumors using next-generation sequencing (182 or 236 genes; Clinical Laboratory Improvement Amendments laboratory). Aberrations in the cell-cycle pathway were identified in 39% of cancers, making this pathway one of the most commonly altered in cancer. The frequency of aberrations was as follows: CDKN2A/B (20.1% of all patients), RB1 (7.6%), CCND1 (6.1%), CCNE1 (3.6%), CDK4 (3.2%), CCND3 (1.8%), CCND2 (1.7%), and CDK6 (1.7%). Rates and types of aberrant cell-cycle pathway genes differed between cancer types and within histologies. Analysis of coexisting and mutually exclusive genetic aberrations showed that CCND1, CCND2, and CCND3 aberrations were all positively associated with CDK6 aberrations [OR and P values, multivariate analysis: CCND1 and CDK6 (OR = 3.5; P < 0.0001), CCND2 and CDK6 (OR = 4.3; P = 0.003), CCND3 and CDK6 (OR = 3.6; P = 0.007)]. In contrast, RB1 alterations were negatively associated with multiple gene anomalies in the cell-cycle pathway, including CCND1 (OR = 0.25; P = 0.003), CKD4 (OR = 0.10; P = 0.001), and CDKN2A/B (OR = 0.21; P < 0.0001). In conclusion, aberrations in the cell-cycle pathway were very common in diverse cancers (39% of 4,864 neoplasms). The frequencies and types of alterations differed between and within tumor types and will be informative for drug development strategies. Mol Cancer Ther; 15(7); 1682–90. ©2016 AACR.

Usage metrics

    Molecular Cancer Therapeutics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC