Supplemental Figure Legend S1 from Intracellular Targeting of the Oncogenic MUC1-C Protein with a Novel GO-203 Nanoparticle Formulation
journal contribution
posted on 2023-03-31, 18:28 authored by Masanori Hasegawa, Raj Kumar Sinha, Manoj Kumar, Maroof Alam, Li Yin, Deepak Raina, Akriti Kharbanda, Govind Panchamoorthy, Dikshi Gupta, Harpal Singh, Surender Kharbanda, Donald Kufe<p>Supplemental Figure Legend S1</p>
History
Related Materials
- 1.
ARTICLE ABSTRACT
Purpose: The MUC1-C oncoprotein is an intracellular target that is druggable with cell-penetrating peptide inhibitors. However, development of peptidyl drugs for treating cancer has been a challenge because of unfavorable pharmacokinetic parameters and limited cell-penetrating capabilities.Experimental Design: Encapsulation of the MUC1-C inhibitor GO-203 in novel polymeric nanoparticles was studied for effects on intracellular targeting of MUC1-C signaling and function.Results: Our results show that loading GO-203 into tetrablock polylactic acid (PLA)-polyethylene glycol (PEG)-polypropylene glycol (PPG)-PEG copolymers is achievable and, notably, is enhanced by increasing PEG chain length. In addition, we found that release of GO-203 from these nanoparticles is controllable over at least 7 days. GO-203/nanoparticle treatment of MUC1-C–positive breast and lung cancer cells in vitro was more active with less frequent dosing than that achieved with nonencapsulated GO-203. Moreover, treatment with GO-203/nanoparticles blocked MUC1-C homodimerization, consistent with on-target effects. GO-203/nanoparticle treatment was also effective in downregulating TIGAR, disrupting redox balance, and inhibiting the self-renewal capacity of cancer cells. Significantly, weekly administration of GO-203/nanoparticles to mice bearing syngeneic or xenograft tumors was associated with regressions that were comparable with those found when dosing on a daily basis with GO-203.Conclusions: These findings thus define an effective approach for (i) sustained administration of GO-203 in polymeric PLA-(PEG-PPG-PEG) nanoparticles to target MUC1-C in cancer cells and (ii) the potential delivery of other anticancer peptide drugs. Clin Cancer Res; 21(10); 2338–47. ©2015 AACR.Usage metrics
Keywords
Licence
Exports
RefWorksRefWorks
BibTeXBibTeX
Ref. managerRef. manager
EndnoteEndnote
DataCiteDataCite
NLMNLM
DCDC

