American Association for Cancer Research
Browse
00085472can161839-sup-168696_2_supp_3793929_5j9n6w.docx (21.29 kB)

Supplement Materials and Methods from Differential PI3Kδ Signaling in CD4+ T-cell Subsets Enables Selective Targeting of T Regulatory Cells to Enhance Cancer Immunotherapy

Download (21.29 kB)
journal contribution
posted on 2023-03-31, 01:03 authored by Shamim Ahmad, Rasha Abu-Eid, Rajeev Shrimali, Mason Webb, Vivek Verma, Atbin Doroodchi, Zuzana Berrong, Raed Samara, Paulo C. Rodriguez, Mikayel Mkrtichyan, Samir N. Khleif

Supplement Methods

History

ARTICLE ABSTRACT

To modulate T-cell function for cancer therapy, one challenge is to selectively attenuate regulatory but not conventional CD4+ T-cell subsets [regulatory T cell (Treg) and conventional T cell (Tconv)]. In this study, we show how a functional dichotomy in Class IA PI3K isoforms in these two subsets of CD4+ T cells can be exploited to target Treg while leaving Tconv intact. Studies employing isoform-specific PI3K inhibitors and a PI3Kδ-deficient mouse strain revealed that PI3Kα and PI3Kβ were functionally redundant with PI3Kδ in Tconv. Conversely, PI3Kδ was functionally critical in Treg, acting there to control T-cell receptor signaling, cell proliferation, and survival. Notably, in a murine model of lung cancer, coadministration of a PI3Kδ-specific inhibitor with a tumor-specific vaccine decreased numbers of suppressive Treg and increased numbers of vaccine-induced CD8 T cells within the tumor microenvironment, eliciting potent antitumor efficacy. Overall, our results offer a mechanistic rationale to employ PI3Kδ inhibitors to selectively target Treg and improve cancer immunotherapy. Cancer Res; 77(8); 1892–904. ©2017 AACR.

Usage metrics

    Cancer Research

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC