American Association for Cancer Research
Browse
Back

Figure S5 from TEAD-Independent Cell Growth of Hippo-Inactive Mesothelioma Cells: Unveiling Resistance to TEAD Inhibitor K-975 through MYC Signaling Activation

Download (205.64 kB)
journal contribution
posted on 2025-05-02, 07:20 authored by Ken Akao, Tatsuhiro Sato, Emi Mishiro-Sato, Satomi Mukai, Farhana Ishrat Ghani, Lisa Kondo-Ida, Kazuyoshi Imaizumi, Yoshitaka Sekido

A subset of Hippo-inactive cell lines exhibits primary resistance to K-975.

Funding

Japan Society for the Promotion of Science (JSPS)

Princess Takamatsu Cancer Research Fund

History

ARTICLE ABSTRACT

Inactivation of tumor-suppressive Hippo signaling pathway is frequently observed in mesothelioma, which leads to the activation of yes-associated protein (YAP) and TAZ (also known as WW domain–containing transcription regulator 1; YAP/TAZ) transcriptional coactivators. YAP/TAZ form complexes with TEAD family members, DNA-binding proteins, to activate transcription, which promotes cancer cell growth and proliferation. Recently developed TEAD inhibitors exhibit antitumor activity by inhibiting the formation of the transcription complex through binding to TEAD; however, the antitumor activity of TEAD inhibitors against mesothelioma remains to be fully elucidated. Here, we show that the TEAD inhibitor K-975 acts as a pan-TEAD inhibitor and selectively inhibits the binding of TEAD-binding proteins, especially YAP/TAZ, in mesothelioma cells. In studies using a panel of mesothelioma cell lines, K-975 showed a significant growth inhibitory effect on Hippo-inactivated mesothelioma cells, but some of these cell lines exhibited primary resistance to K-975. Differential gene expression analysis revealed that cells resistant to K-975 exhibited activation of MYC signaling in the presence of K-975, and cells overexpressed with MYC showed strong drug resistance, in vitro and in vivo. Our study revealed the features of a subset of mesothelioma cells that proliferate in a TEAD-independent manner and provides important insights for the successful development of therapeutic strategies for mesothelioma with Hippo pathway inactivation.