posted on 2024-09-09, 09:40authored byStamatia C. Vorri, Natalie J. Holl, Michael Leeming, Petya Apostolova, Andrew Marple, Jonas W. Ravich, Ata Canbaz, Ruyan Rahnama, Jun Choe, Arjun Modi, Adam D. Fearnow, Scott T.R. Walsh, Erika L. Pearce, Ravi Varadhan, Challice L. Bonifant
Supplementary Figure 5
History
ARTICLE ABSTRACT
Chimeric antigen receptor (CAR) T cells can effectively treat leukemias, but sustained antitumor responses can be hindered by a lack of CAR T-cell persistence. Cytotoxic effector T cells are short-lived, and establishment of CAR-T cells with memory to ensure immune surveillance is important. Memory T cells depend on cytokine support, with IL7 activation of the IL7 receptor (IL7R) being critical. However, IL7R surface expression is negatively regulated by exposure to IL7. We aimed to support CAR T-cell persistence by equipping CAR-T cells with a sustained IL7Rα signal. We engineered T cells to constitutively secrete IL7 or to express an anti–acute myeloid leukemia–targeted IL7Rα–chimeric cytokine receptor (CCR) and characterized the phenotype of these cell types. Canonical downstream signaling was activated in CCR-T cells with IL7R activation. When coexpressed with a cytotoxic CAR, functionality of both the CCR and CAR was maintained. We designed hybrid CAR–CCR and noted membrane proximity of the intracellular domains as vital for signaling. These data show cell-intrinsic cytokine support with canonical signaling, and functionality can be provided via expression of an IL7Rα domain whether independently expressed or incorporated into a cytotoxic CAR for use in anticancer therapy.
To improve the phenotype of tumor-directed T-cell therapy, we show that provision of cell-intrinsic IL7R-mediated signaling is preferable to activation of cells with exogenous IL7. We engineer this signaling via independent receptor engineering and incorporation into a CAR and validate maintained antigen-specific cytotoxic activity.