American Association for Cancer Research
00085472can171700-sup-184499_3_supp_4377134_4zbmmn.docx (148.84 kB)

Figure S3 from Photodynamic Priming Mitigates Chemotherapeutic Selection Pressures and Improves Drug Delivery

Download (148.84 kB)
journal contribution
posted on 2023-03-31, 01:27 authored by Huang-Chiao Huang, Imran Rizvi, Joyce Liu, Sriram Anbil, Ashish Kalra, Helen Lee, Yan Baglo, Nancy Paz, Douglas Hayden, Steve Pereira, Brian W. Pogue, Jonathan Fitzgerald, Tayyaba Hasan

Relationship between primary tumour weight and distant metastatic burden during disease progression.


National Center for Research Resources


Massachusetts General Hospital Tosteson Fellowship

Howard Hughes Medical Institute

National Institute for Health Research



Physiologic barriers to drug delivery and selection for drug resistance limit survival outcomes in cancer patients. In this study, we present preclinical evidence that a subtumoricidal photodynamic priming (PDP) strategy can relieve drug delivery barriers in the tumor microenvironment to safely widen the therapeutic window of a nanoformulated cytotoxic drug. In orthotopic xenograft models of pancreatic cancer, combining PDP with nanoliposomal irinotecan (nal-IRI) prevented tumor relapse, reduced metastasis, and increased both progression-free survival and 1-year disease-free survival. PDP enabled these durable improvements by targeting multiple tumor compartments to (i) increase intratumoral drug accumulation by >10-fold, (ii) increase the duration of drug exposure above a critical therapeutic threshold, and (iii) attenuate surges in CD44 and CXCR4 expression, which mediate chemoresistance often observed after multicycle chemotherapy. Overall, our results offer preclinical proof of concept for the effectiveness of PDP to minimize risks of tumor relapse, progression, and drug resistance and to extend patient survival.Significance: A biophysical priming approach overcomes key treatment barriers, significantly reduces metastases, and prolongs survival in orthotopic models of human pancreatic cancer. Cancer Res; 78(2); 558–71. ©2017 AACR.