American Association for Cancer Research
Browse
00085472can183544-sup-211914_2_supp_5666910_pv5b5y.pdf (188.36 kB)

Figure S2 from miR-221 Targets QKI to Enhance the Tumorigenic Capacity of Human Colorectal Cancer Stem Cells

Download (188.36 kB)
journal contribution
posted on 2023-03-31, 02:47 authored by Junko Mukohyama, Taichi Isobe, Qingjiang Hu, Takanori Hayashi, Takashi Watanabe, Masao Maeda, Hisano Yanagi, Xin Qian, Kimihiro Yamashita, Hironobu Minami, Koshi Mimori, Debashis Sahoo, Yoshihiro Kakeji, Akira Suzuki, Piero Dalerba, Yohei Shimono

Expression level of miR-221 in the Lgr5+/Kit- mouse colon epithelial cells.

Funding

Japan Society for the Promotion of Science

Japan-Belgium Research Cooperative Program

Japan Foundation for Applied Enzymology

New York State Stem Cell Science

History

ARTICLE ABSTRACT

miRNAs are key players in the integrated regulation of cellular processes and shape many of the functional properties that define the “cancer stem cell” (CSC) phenotype. Little is known, however, about miRNAs that regulate such properties in human colorectal carcinoma. In this study, we compared the expression levels of 754 miRNAs between paired samples of EpCAM+/CD44+ cancer cells (enriched in CSCs) and EpCAM+/CD44neg cancer cells (with CSC depletion) sorted in parallel from human primary colorectal carcinomas and identified miR-221 as the miRNA that displayed the highest level of preferential expression in EpCAM+/CD44+ cancer cells. High levels of miR-221 expression were associated with Lgr5+ cells in mouse colon crypts and reduced survival in patients with colorectal carcinoma. Constitutive overexpression of miR-221 enhanced organoid-forming capacity of both conventional colorectal carcinoma cell lines and patient-derived xenografts (PDX) in vitro. Importantly, constitutive downregulation of miR-221 suppressed organoid-forming capacity in vitro and substantially reduced the tumorigenic capacity of CSC populations from PDX lines in vivo. Finally, the most abundant splicing isoform of the human Quaking (QKI) gene, QKI-5, was identified as a functional target of miR-221; overexpression of miR-221–reduced QKI-5 protein levels in human colorectal carcinoma cells. As expected, overexpression of QKI-5 suppressed organoid-forming capacity in vitro and tumorigenic capacity of colorectal carcinoma PDX cells in vivo. Our study reveals a mechanistic link between miR-221 and QKI and highlights their key role in regulating CSC properties in human colorectal cancer. These findings uncover molecular mechanisms underlying the maintenance of cancer stem cell properties in colon cancer.

Usage metrics

    Cancer Research

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC