American Association for Cancer Research
Browse
- No file added yet -

Figure S1 from A Novel Therapeutic Induces DEPTOR Degradation in Multiple Myeloma Cells with Resulting Tumor Cytotoxicity

Download (114.71 kB)
journal contribution
posted on 2023-04-03, 15:00 authored by Mario I. Vega, Yijiang Shi, Patrick Frost, Sara Huerta-Yepez, Gabriela Antonio-Andres, Rogelio Hernandez-Pando, Jihye Lee, Michael E. Jung, Joseph F. Gera, Alan Lichtenstein

Supplemental figure 1: A) Hematopoietic colony formation in marrow cells exposed to drug 3g for 14 days (assay as described in (3); Data represent % of control (0uM), mean+/-SD; B)8226 MM cells, PC3 prostate cancer cells, LLC Lewis lung cancer cells and JHH7 hepatocellular cancer cells were incubated for 48 hrs +/- drug 3g at 0 (DMSO), 1 or 2 uM in MTT assays. Data are mean+/-SD, n=3 for MTT cytotoxicity where DMSO controls are 100% survival

Funding

NIH

VA and Multiple Myeloma Research Foundation

History

ARTICLE ABSTRACT

Prior work indicates DEPTOR expression in multiple myeloma cells could be a therapeutic target. DEPTOR binds to mTOR via its PDZ domain and inhibits mTOR kinase activity. We previously identified a drug, which prevented mTOR–DEPTOR binding (NSC126405) and induced multiple myeloma cytotoxicity. We now report on a related therapeutic, drug 3g, which induces proteasomal degradation of DEPTOR. DEPTOR degradation followed drug 3g binding to its PDZ domain and was not due to caspase activation or enhanced mTOR phosphorylation of DEPTOR. Drug 3g enhanced mTOR activity, and engaged the IRS-1/PI3K/AKT feedback loop with reduced phosphorylation of AKT on T308. Activation of TORC1, in part, mediated multiple myeloma cytotoxicity. Drug 3g was more effective than NSC126405 in preventing binding of recombinant DEPTOR to mTOR, preventing binding of DEPTOR to mTOR inside multiple myeloma cells, in activating mTOR and inducing apoptosis in multiple myeloma cells. In vivo, drug 3g injected daily abrogated DEPTOR expression in xenograft tumors and induced an antitumor effect although modest weight loss was seen. Every-other-day treatment, however, was equally effective without weight loss. Drug 3g also reduced DEPTOR expression in normal tissues. Although no potential toxicity was identified in hematopoietic or hepatic function, moderate cardiac enlargement and glomerular mesangial hypertrophy was seen. DEPTOR protected multiple myeloma cells against bortezomib suggesting anti-DEPTOR drugs could synergize with proteasome inhibitors (PI). Indeed, combinations of drug NSC126405 + bortezomib were synergistic. In contrast, drug 3g was not and was even antagonistic. This antagonism was probably due to prevention of proteasomal DEPTOR degradation.

Usage metrics

    Molecular Cancer Therapeutics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC