American Association for Cancer Research
Browse

Figure Legend Ssupplemental Figure1 from Barasertib (AZD1152), a Small Molecule Aurora B Inhibitor, Inhibits the Growth of SCLC Cell Lines In Vitro and In Vivo

Download (12.01 kB)
journal contribution
posted on 2023-04-03, 14:45 authored by Barbara A. Helfrich, Jihye Kim, Dexiang Gao, Daniel C. Chan, Zhiyong Zhang, Aik-Choon Tan, Paul A. Bunn

Figure legend Supplemental Figure 1

Funding

NCI

AstraZeneca

NIH

History

ARTICLE ABSTRACT

Small-cell lung cancer (SCLC) cells have rapid proliferation, universal Rb inactivation, and high rates of MYC family amplification, making aurora kinase inhibition a natural target. Preclinical studies have demonstrated activity for Aurora A and pan-Aurora inhibitors with some relationship to MYC family expression. A clinical trial showed activity for an Aurora kinase A inhibitor, but no biomarkers were evaluated. We screened a panel of 23 SCLC lines with and without MYC family gene amplification or high MYC family gene expression for growth inhibition by the highly potent, selective aurora kinase B inhibitor barasertib. Nine of the SCLC lines were very sensitive to growth inhibition by barasertib, with IC50 values of <50 nmol/L and >75% growth inhibition at 100 nmol/L. Growth inhibition correlated with cMYC amplification (P = 0.018) and cMYC gene expression (P = 0.026). Sensitive cell lines were also enriched in a published MYC gene signature (P = 0.042). In vivo, barasertib inhibited the growth of xenografts established from an SCLC line that had high cMYC gene expression, no cMYC amplification, and was positive for the core MYC gene signature. Our studies suggest that SCLC tumors with cMYC amplification/high gene expression will frequently respond to Aurora B inhibitors and that clinical studies coupled with predictive biomarkers are indicated. Mol Cancer Ther; 15(10); 2314–22. ©2016 AACR.

Usage metrics

    Molecular Cancer Therapeutics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC