Fig.S7 from Dual Roles for CXCL4 Chemokines and CXCR3 in Angiogenesis and Invasion of Pancreatic Cancer
journal contribution
posted on 2023-03-30, 23:50 authored by Cathy Quemener, Jessica Baud, Kevin Boyé, Alexandre Dubrac, Clotilde Billottet, Fabienne Soulet, Florence Darlot, Laurent Dumartin, Marie Sire, Renaud Grepin, Thomas Daubon, Fabienne Rayne, Harald Wodrich, Anne Couvelard, Raphael Pineau, Martin Schilling, Vincent Castronovo, Shih-Che Sue, Kim Clarke, Abderrahim Lomri, Abdel-Majid Khatib, Martin Hagedorn, Hervé Prats, Andreas BikfalviCharacterization of PECAM-1 expression in pancreatic tumours
Funding
Agence Nationale de la Recherche
Association de la Recherche sur le Cancer
Ligue Nationale contre Cancer
Institut National du Cancer
ANR
INCA
Fondation pour la Recherche Médicale
History
ARTICLE ABSTRACT
The CXCL4 paralog CXCL4L1 is a less studied chemokine that has been suggested to exert an antiangiogenic function. However, CXCL4L1 is also expressed in patient tumors, tumor cell lines, and murine xenografts, prompting a more detailed analysis of its role in cancer pathogenesis. We used genetic and antibody-based approaches to attenuate CXCL4L1 in models of pancreatic ductal adenocarcinoma (PDAC). Mechanisms of expression were assessed in cell coculture experiments, murine, and avian xenotransplants, including through an evaluation of CpG methylation and mutation of critical CpG residues. CXCL4L1 gene expression was increased greatly in primary and metastatic PDAC. We found that myofibroblasts triggered cues in the tumor microenvironment, which led to induction of CXCL4L1 in tumor cells. CXCL4L1 expression was also controlled by epigenetic modifications at critical CpG islands, which were mapped. CXCL4L1 inhibited angiogenesis but also affected tumor development more directly, depending on the tumor cell type. In vivo administration of an mAb against CXCL4L1 demonstrated a blockade in the growth of tumors positive for CXCR3, a critical receptor for CXCL4 ligands. Our findings define a protumorigenic role in PDAC development for endogenous CXCL4L1, which is independent of its antiangiogenic function. Cancer Res; 76(22); 6507–19. ©2016 AACR.Usage metrics
Categories
Keywords
Licence
Exports
RefWorksRefWorks
BibTeXBibTeX
Ref. managerRef. manager
EndnoteEndnote
DataCiteDataCite
NLMNLM
DCDC