American Association for Cancer Research
ccr-21-2834_supplementary_figure_s8_suppfs8.png (113.3 kB)

Supplementary Figure from Improved T-cell Immunity Following Neoadjuvant Chemotherapy in Ovarian Cancer

Download (113.3 kB)
posted on 2023-03-31, 23:09 authored by Min Liu, Nabihah Tayob, Livius Penter, MacLean Sellars, Anna Tarren, Vipheaviny Chea, Isabel Carulli, Teddy Huang, Shuqiang Li, Su-Chun Cheng, Phuong Le, Laura Frackiewicz, Julia Fasse, Courtney Qi, Joyce F. Liu, Elizabeth H. Stover, Jennifer Curtis, Kenneth J. Livak, Donna Neuberg, Guanglan Zhang, Ursula A. Matulonis, Catherine J. Wu, Derin B. Keskin, Panagiotis A. Konstantinopoulos
Supplementary Figure from Improved T-cell Immunity Following Neoadjuvant Chemotherapy in Ovarian Cancer


National Cancer Institute (NCI)

United States Department of Health and Human Services

Find out more...



Although local tissue-based immune responses are critical for elucidating direct tumor–immune cell interactions, peripheral immune responses are increasingly recognized as occupying an important role in anticancer immunity. We evaluated serial blood samples from patients with advanced epithelial ovarian cancer (EOC) undergoing standard-of-care neoadjuvant carboplatin and paclitaxel chemotherapy (including dexamethasone for prophylaxis of paclitaxel-associated hypersensitivity reactions) to characterize the evolution of the peripheral immune cell function and composition across the course of therapy. Serial blood samples from 10 patients with advanced high-grade serous ovarian cancer treated with neoadjuvant chemotherapy (NACT) were collected before the initiation of chemotherapy, after the third and sixth cycles, and approximately 2 months after completion of chemotherapy. T-cell function was evaluated using ex vivo IFNγ ELISpot assays, and the dynamics of T-cell repertoire and immune cell composition were assessed using bulk and single-cell RNA sequencing (RNAseq). T cells exhibited an improved response to viral antigens after NACT, which paralleled the decrease in CA125 levels. Single-cell analysis revealed increased numbers of memory T-cell receptor (TCR) clonotypes and increased central memory CD8+ and regulatory T cells throughout chemotherapy. Finally, administration of NACT was associated with increased monocyte frequency and expression of HLA class II and antigen presentation genes; single-cell RNAseq analyses showed that although driven largely by classical monocytes, increased class II gene expression was a feature observed across monocyte subpopulations after chemotherapy. NACT may alleviate tumor-associated immunosuppression by reducing tumor burden and may enhance antigen processing and presentation. These findings have implications for the successful combinatorial applications of immune checkpoint blockade and therapeutic vaccine approaches in EOC.

Usage metrics

    Clinical Cancer Research





    Ref. manager