Supplementary Figure 5: Copy number variants in the three main glioblastoma groups according to classifier v12.5. A Copy number variants in all patients combined (n = 295), B in RTK1 tumors (n = 89), C in RTK2 tumors (n = 140) and D in MES tumors (n = 66). PDGFRA amplifications are enriched in RTK1 tumors and gains of chromosomes 19 and 20 are enriched in RTK2 tumors.
ARTICLE ABSTRACT
The EORTC-26101 study was a randomized phase II and III clinical trial of bevacizumab in combination with lomustine versus lomustine alone in progressive glioblastoma. Other than for progression-free survival (PFS), there was no benefit from addition of bevacizumab for overall survival (OS). However, molecular data allow for the rare opportunity to assess prognostic biomarkers from primary surgery for their impact in progressive glioblastoma.
We analyzed DNA methylation array data and panel sequencing from 170 genes of 380 tumor samples of the EORTC-26101 study. These patients were comparable with the overall study cohort in regard to baseline characteristics, study treatment, and survival.
Of patients' samples, 295/380 (78%) were classified into one of the main glioblastoma groups, receptor tyrosine kinase (RTK)1, RTK2 and mesenchymal. There were 10 patients (2.6%) with isocitrate dehydrogenase mutant tumors in the biomarker cohort. Patients with RTK1 and RTK2 classified tumors had lower median OS compared with mesenchymal (7.6 vs. 9.2 vs. 10.5 months). O6-methylguanine DNA-methyltransferase (MGMT) promoter methylation was prognostic for PFS and OS. Neurofibromin (NF)1 mutations were predictive of response to bevacizumab treatment.
Thorough molecular classification is important for brain tumor clinical trial inclusion and evaluation. MGMT promoter methylation and RTK1 classifier assignment were prognostic in progressive glioblastoma. NF1 mutation may be a predictive biomarker for bevacizumab treatment.