American Association for Cancer Research
Browse
- No file added yet -

Supplementary Figure S3 from Radiation Enhancement of Head and Neck Squamous Cell Carcinoma by the Dual PI3K/mTOR Inhibitor PF-05212384

Download (301 kB)
figure
posted on 2023-03-31, 19:08 authored by Andrew J. Leiker, William DeGraff, Rajani Choudhuri, Anastasia L. Sowers, Angela Thetford, John A. Cook, Carter Van Waes, James B. Mitchell

Supplementary Figure S3. The effects of PF-05212384 on the phosphorylation of the PI3K/mTOR downstream targets S6 and 4EBP1 as a function of PF-05212384 (10 μM) treatment time following irradiation (7.5 Gy) for exponentially growing A) UMSCC1 and B) UMSCC46 HNSCC cells.

History

ARTICLE ABSTRACT

Purpose: Radiation remains a mainstay for the treatment of nonmetastatic head and neck squamous cell carcinoma (HNSCC), a malignancy characterized by a high rate of PI3K/mTOR signaling axis activation. We investigated the ATP-competitive dual PI3K/mTOR inhibitor, PF-05212384, as a radiosensitizer in preclinical HNSCC models.Experimental Design: Extent of radiation enhancement of two HNSCC cell lines (UMSCC1-wtP53 and UMSCC46-mtP53) and normal human fibroblast (1522) was assessed by in vitro clonogenic assay with appropriate target inhibition verified by immunoblotting. Radiation-induced DNA damage repair was evaluated by γH2AX Western blots with the mechanism of DNA double-strand break repair abrogation investigated by cell cycle analysis, immunoblotting, and RT-PCR. PF-05212384 efficacy in vivo was assessed by UMSCC1 xenograft tumor regrowth delay, xenograft lysate immunoblotting, and tissue section immunohistochemistry.Results: PF-05212384 effectively inhibited PI3K and mTOR, resulting in significant radiosensitization of exponentially growing and plateau-phase cells with 24-hour treatment following irradiation, and variable radiation enhancement with 24-hour treatment before irradiation. Tumor cells radiosensitized to a greater extent than normal human fibroblasts. Postirradiation PF-05212384 treatment delays γH2AX foci resolution. PF-05212384 24-hour exposure resulted in an evident G1–S phase block in p53-competent cells. Fractionated radiation plus i.v. PF-05212384 synergistically delayed nude mice bearing UMSCC1 xenograft regrowth, with potential drug efficacy biomarkers identified, including pS6, pAkt, p4EBP1, and Ki67.Conclusions: Taken together, our results of significant radiosensitization both in vitro and in vivo validate the PI3K/mTOR axis as a radiation modification target and PF-05212384 as a potential clinical radiation modifier of nonmetastatic HNSCC. Clin Cancer Res; 21(12); 2792–801. ©2015 AACR.

Usage metrics

    Clinical Cancer Research

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC