American Association for Cancer Research
00085472can142036-sup-134483_3_supp_2758795_nflbrj.jpeg (1000.81 kB)

Supplementary Figure S2 from Suppressing TGFβ Signaling in Regenerating Epithelia in an Inflammatory Microenvironment Is Sufficient to Cause Invasive Intestinal Cancer

Download (1000.81 kB)
posted on 2023-03-30, 23:21 authored by Hiroko Oshima, Mizuho Nakayama, Tae-Su Han, Kuniko Naoi, Xiaoli Ju, Yusuke Maeda, Sylvie Robine, Kiichiro Tsuchiya, Toshiro Sato, Hiroshi Sato, Makoto Mark Taketo, Masanobu Oshima

Supplementary Figure S2. Expression levels of microenvironment factors in stroma and epithelial cells of ApcÃŽ?716 mice.



Genetic alterations in the TGFβ signaling pathway in combination with oncogenic alterations lead to cancer development in the intestines. However, the mechanisms of TGFβ signaling suppression in malignant progression of intestinal tumors have not yet been fully understood. We have examined ApcΔ716 Tgfbr2ΔIEC compound mutant mice that carry mutations in Apc and Tgfbr2 genes in the intestinal epithelial cells. We found inflammatory microenvironment only in the invasive intestinal adenocarcinomas but not in noninvasive benign polyps of the same mice. We thus treated simple Tgfbr2ΔIEC mice with dextran sodium sulfate (DSS) that causes ulcerative colitis. Importantly, these Tgfbr2ΔIEC mice developed invasive colon cancer associated with chronic inflammation. We also found that TGFβ signaling is suppressed in human colitis–associated colon cancer cells. In the mouse invasive tumors, macrophages infiltrated and expressed MT1-MMP, causing MMP2 activation. These results suggest that inflammatory microenvironment contributes to submucosal invasion of TGFβ signaling–repressed epithelial cells through activation of MMP2. We further found that regeneration was impaired in Tgfbr2ΔIEC mice for intestinal mucosa damaged by DSS treatment or X-ray irradiation, resulting in the expansion of undifferentiated epithelial cell population. Moreover, organoids of intestinal epithelial cells cultured from irradiated Tgfbr2ΔIEC mice formed “long crypts” in Matrigel, suggesting acquisition of an invasive phenotype into the extracellular matrix. These results, taken together, indicate that a simple genetic alteration in the TGFβ signaling pathway in the inflamed and regenerating intestinal mucosa can cause invasive intestinal tumors. Such a mechanism may play a role in the colon carcinogenesis associated with inflammatory bowel disease in humans. Cancer Res; 75(4); 766–76. ©2015 AACR.