American Association for Cancer Research
15357163mct181202-sup-210868_3_supp_5763671_pxknsm.pptx (82.08 kB)

Supplementary Figure S1 from Dual Inhibition of Angiopoietin-TIE2 and MET Alters the Tumor Microenvironment and Prolongs Survival in a Metastatic Model of Renal Cell Carcinoma

Download (82.08 kB)
posted on 2023-04-03, 15:26 authored by May Elbanna, Ashley R. Orillion, Nur P. Damayanti, Remi Adelaiye-Ogala, Li Shen, Kiersten Marie Miles, Sreenivasulu Chintala, Eric Ciamporcero, Swathi Ramakrishnan, Sheng-yu Ku, Karen Rex, Sean Caenepeel, Angela Coxon, Roberto Pili

Supplementary Figure S1 shows the chemical structure of compound 22.






Receptor tyrosine kinase inhibitors have shown clinical benefit in clear cell renal cell carcinoma (ccRCC), but novel therapeutic strategies are needed. The angiopoietin/Tie2 and MET pathways have been implicated in tumor angiogenesis, metastases, and macrophage infiltration. In our study, we used trebananib, an angiopoietin 1/2 inhibitor, and a novel small-molecule MET kinase inhibitor in patient-derived xenograft (PDX) models of ccRCC. Our goal was to assess the ability of these compounds to alter the status of tumor-infiltrating macrophages, inhibit tumor growth and metastases, and prolong survival. Seven-week-old SCID mice were implanted subcutaneously or orthotopically with human ccRCC models. One month postimplantation, mice were treated with angiopoietin 1/2 inhibitor trebananib (AMG 386), MET kinase inhibitor, or combination. In our metastatic ccRCC PDX model, RP-R-02LM, trebananib alone, and in combination with a MET kinase inhibitor, significantly reduced lung metastases and M2 macrophage infiltration (P = 0.0075 and P = 0.0205, respectively). Survival studies revealed that treatment of the orthotopically implanted RP-R-02LM tumors yielded a significant increase in survival in both trebananib and combination groups. In addition, resection of the subcutaneously implanted primary tumor allowed for a significant survival advantage to the combination group compared with vehicle and both single-agent groups. Our results show that the combination of trebananib with a MET kinase inhibitor significantly inhibits the spread of metastases, reduces infiltrating M2-type macrophages, and prolongs survival in our highly metastatic ccRCC PDX model, suggesting a potential use for this combination therapy in treating patients with ccRCC.

Usage metrics

    Molecular Cancer Therapeutics



    Ref. manager