American Association for Cancer Research
Browse
- No file added yet -

Supplementary Figure 8 from Galectin-3 Cleavage Alters Bone Remodeling: Different Outcomes in Breast and Prostate Cancer Skeletal Metastasis

Download (362.77 kB)
figure
posted on 2023-03-30, 23:43 authored by Kosei Nakajima, Dhong Hyo Kho, Takashi Yanagawa, Yosuke Harazono, Victor Hogan, Wei Chen, Rouba Ali-Fehmi, Rohit Mehra, Avraham Raz

Cancer patient's IgG does not recognize CRD of Gal-3.

Funding

NIH/NCI

NIH

History

ARTICLE ABSTRACT

Management of bone metastasis remains clinically challenging and requires the identification of new molecular target(s) that can be therapeutically exploited to improve patient outcome. Galectin-3 (Gal-3) has been implicated as a secreted factor that alters the bone microenvironment. Proteolytic cleavage of Gal-3 may also contribute to malignant cellular behaviors, but has not been addressed in cancer metastasis. Here, we report that Gal-3 modulates the osteolytic bone tumor microenvironment in the presence of RANKL. Gal-3 was localized on the osteoclast cell surface, and its suppression by RNAi or a specific antagonist markedly inhibited osteoclast differentiation markers, including tartrate-resistant acid phosphatase, and reduced the number of mature osteoclasts. Structurally, the 158–175 amino acid sequence in the carbohydrate recognition domain (CRD) of Gal-3 was responsible for augmented osteoclastogenesis. During osteoclast maturation, Gal-3 interacted and colocalized with myosin-2A along the surface of cell–cell fusion. Pathologically, bone metastatic cancers expressed and released an intact form of Gal-3, mainly detected in breast cancer bone metastases, as well as a cleaved form, more abundant in prostate cancer bone metastases. Secreted intact Gal-3 interacted with myosin-2A, leading to osteoclastogenesis, whereas a shift to cleaved Gal-3 attenuated the enhancement in osteoclast differentiation. Thus, our studies demonstrate that Gal-3 shapes the bone tumor microenvironment through distinct roles contingent on its cleavage status, and highlight Gal-3 targeting through the CRD as a potential therapeutic strategy for mitigating osteolytic bone remodeling in the metastatic niche. Cancer Res; 76(6); 1391–402. ©2016 AACR.

Usage metrics

    Cancer Research

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC