American Association for Cancer Research

sorry, we can't preview this file

crc-23-0331-s28.pptx (21.04 MB)

Supplementary Figure 18 from Gigaxonin Suppresses Epithelial-to-Mesenchymal Transition of Human Cancer Through Downregulation of Snail

Download (21.04 MB)
posted on 2024-03-08, 14:20 authored by Mysore S. Veena, Jungmo J. Gahng, Mustafa Alani, Albert Y. Ko, Saroj K. Basak, Isabelle Y. Liu, Kimberly J. Hwang, Jenna R. Chatoff, Natarajan Venkatesan, Marco Morselli, Weihong Yan, Ibraheem Ali, Karolina Elżbieta Kaczor-Urbanowicz, Bhavani Shankara Gowda, Patrick Frost, Matteo Pellegrini, Neda A. Moatamed, Sharon P. Wilczynski, Pascale Bomont, Marilene B. Wang, Daniel Sanghoon Shin, Eri S. Srivatsan

E-cadherin and Snail expression in breast and prostate cancer samples


VA | VA Greater Los Angeles Healthcare System (GLA)



Gigaxonin is an E3 ubiquitin ligase that plays a role in cytoskeletal stability. Its role in cancer is not yet clearly understood. Our previous studies of head and neck cancer had identified gigaxonin interacting with p16 for NFκB ubiquitination. To explore its role in cancer cell growth suppression, we analyzed normal and tumor DNA from cervical and head and neck cancers. There was a higher frequency of exon 8 SNP (c.1293 C>T, rs2608555) in the tumor (46% vs. 25% normal, P = 0.011) pointing to a relationship to cancer. Comparison of primary tumor with recurrence and metastasis did not reveal a statistical significance. Two cervical cancer cell lines, ME180 and HT3 harboring exon 8 SNP and showing T allele expression correlated with higher gigaxonin expression, reduced in vitro cell growth and enhanced cisplatin sensitivity in comparison with C allele expressing cancer cell lines. Loss of gigaxonin expression in ME180 cells through CRISPR-Cas9 or siRNA led to aggressive cancer cell growth including increased migration and Matrigel invasion. The in vitro cell growth phenotypes were reversed with re-expression of gigaxonin. Suppression of cell growth correlated with reduced Snail and increased e-cadherin expression. Mouse tail vein injection studies showed increased lung metastasis of cells with low gigaxonin expression and reduced metastasis with reexpression of gigaxonin. We have found an association between C allele expression and RNA instability and absence of multimeric protein formation. From our results, we conclude that gigaxonin expression is associated with suppression of epithelial–mesenchymal transition through inhibition of Snail. Our results suggest that GAN gene exon 8 SNP T allele expression correlates with higher gigaxonin expression and suppression of aggressive cancer cell growth. There is downregulation of Snail and upregulation of e-cadherin through NFκB ubiquitination. We hypothesize that exon 8 T allele and gigaxonin expression could serve as diagnostic markers of suppression of aggressive growth of head and neck cancer.

Usage metrics

    Cancer Research Communications



    Ref. manager