American Association for Cancer Research
Browse

Supplement Figure 3 from Anti-HDGF Antibody Targets EGFR Tyrosine Kinase Inhibitor–Tolerant Cells in NSCLC Patient-Derived Xenografts

Download (51.18 kB)
figure
posted on 2024-09-04, 09:00 authored by Cindy Q. Zhou, Ariel Li, Kaoru Ri, Ahmed S. Sultan, Hening Ren

Supplement Figure 3 shows the Effect of anti-HDGF antibody H3 on post-progression tumor.

History

ARTICLE ABSTRACT

Constitutively active mutant EGFR is one of the major oncogenic drivers in non–small cell lung cancer (NSCLC). Targeted therapy using EGFR tyrosine kinase inhibitor (TKI) is a first-line option in patients that have metastatic or recurring disease. However, despite the high response rate to TKI, most patients have a partial response, and the disease eventually progresses in 10 to 19 months. It is believed that drug-tolerant cells that survive TKI exposure during the progression-free period facilitate the emergence of acquired resistance. Thus, targeting the drug-tolerant cells could improve the treatment of NSCLC with EGFR mutations. We demonstrated here that EGFR-mutant patient-derived xenograft tumors responded partially to osimertinib despite near-complete inhibition of EGFR activation. Signaling in AKT/mTOR and MAPK pathways could be reactivated shortly after initial inhibition. As a result, many tumor cells escaped drug killing and regained growth following about 35 days of continuous osimertinib dosing. However, when an antibody to hepatoma-derived growth factor (HDGF) was given concurrently with osimertinib, tumors showed complete or near-complete responses. There was significant prolongation of progression-free survival of tumor-bearing mice as well. IHC and Western blot analysis of tumors collected in the early stages of treatment suggest that increased suppression of the AKT/mTOR and MAPK pathways could be a mechanism that results in enhanced efficacy of osimertinib when it is combined with an anti-HDGF antibody. These results suggest that HDGF could be critically involved in promoting tolerance to TKI in patient-derived xenografts of NSCLC tumors. Blocking HDGF signaling could be a potential means to enhance EGFR-targeted therapy of NSCLC that warrants further advanced preclinical and clinical studies.

Usage metrics

    Cancer Research Communications

    Categories

    Keywords

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC