American Association for Cancer Research
Browse
00085472can162628-sup-171859_2_supp_3819181_njm5ns.png (712.54 kB)

Suppl. Fig. 1: Experimental design. from Combined PET Imaging of the Inflammatory Tumor Microenvironment Identifies Margins of Unique Radiotracer Uptake

Download (712.54 kB)
figure
posted on 2023-03-31, 01:23 authored by Bastian Zinnhardt, Hayet Pigeon, Benoit Thézé, Thomas Viel, Lydia Wachsmuth, Inga B. Fricke, Sonja Schelhaas, Lisa Honold, Katrin Schwegmann, Stefan Wagner, Andreas Faust, Cornelius Faber, Michael T. Kuhlmann, Sven Hermann, Michael Schäfers, Alexandra Winkeler, Andreas H. Jacobs

Gli36dEGFR cells were implanted. Thereafter, two imaging sequences were conducted: In sequence 1, T2w MRI and PET with [18F]DPA-714 was performed, while [18F]BR-351 PET and [18F]FET PET were conducted at day 13 and 14, respectively. In imaging sequence 2, T2w MRI and [18F]FET PET were conducted at day 12, followed by [18F]BR-351 and [18F]DPA-714 at day 13 and 14, respectively. After the last imaging experiment, mice were sacrificed and the brains immediately harvested for further analysis.

Funding

International Max-Planck Research School – Molecular Biomedicine

History

ARTICLE ABSTRACT

The tumor microenvironment is highly heterogeneous. For gliomas, the tumor-associated inflammatory response is pivotal to support growth and invasion. Factors of glioma growth, inflammation, and invasion, such as the translocator protein (TSPO) and matrix metalloproteinases (MMP), may serve as specific imaging biomarkers of the glioma microenvironment. In this study, noninvasive imaging by PET with [18F]DPA-714 (TSPO) and [18F]BR-351 (MMP) was used for the assessment of localization and quantification of the expression of TSPO and MMP. Imaging was performed in addition to established clinical imaging biomarker of active tumor volume ([18F]FET) in conjunction with MRI. We hypothesized that each imaging biomarker revealed distinct areas of the heterogeneous glioma tissue in a mouse model of human glioma. Tracers were found to be increased 1.4- to 1.7-fold, with [18F]FET showing the biggest volume as depicted by a thresholding-based, volumes of interest analysis. Tumor areas, which could not be detected by a single tracer and/or MRI parameter alone, were measured. Specific compartments of [18F]DPA-714 (14%) and [18F]BR-351 (11%) volumes along the tumor rim could be identified. [18F]DPA-714 (TSPO) and [18F]BR-351 (MMP) matched with histology. Glioma-associated microglia/macrophages (GAM) were identified as TSPO and MMP sources. Multitracer and multimodal molecular imaging approaches may allow us to gain important insights into glioma-associated inflammation (GAM, MMP). Moreover, this noninvasive technique enables characterization of the glioma microenvironment with respect to the disease-driving cellular compartments at the various disease stages. Cancer Res; 77(8); 1831–41. ©2017 AACR.

Usage metrics

    Cancer Research

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC