HDAC3 inhibitory activity is important for the transcription of BIM exon 4-containing isoforms. from Histone Deacetylase 3 Inhibition Overcomes BIM Deletion Polymorphism–Mediated Osimertinib Resistance in EGFR-Mutant Lung Cancer
figure
posted on 2023-03-31, 19:28 authored by Azusa Tanimoto, Shinji Takeuchi, Sachiko Arai, Koji Fukuda, Tadaaki Yamada, Xavier Roca, S. Tiong Ong, Seiji YanoRelative mRNA expression of BIM exon 2A, exon 3, and exon 4, by RT-PCR and ratio of exon 3 to exon 4 transcripts in PC-9BIMi2-/- cells treated with droxinostat (3 µmol/L) (A) or RGFP966 (5 µmol/L) (B) for 12 hours. *, P < 0.05 versus control.
Funding
JSPS
Cancer Research and Therapeutic Evolution
Japan Agency for Medical Research and Development
National Medical Research Council
Clinician Scientist
History
ARTICLE ABSTRACT
Purpose: The BIM deletion polymorphism is associated with apoptosis resistance to EGFR tyrosine kinase inhibitors (EGFR-TKI), such as gefitinib and erlotinib, in non–small cell lung cancer (NSCLC) harboring EGFR mutations. Here, we investigated whether the BIM deletion polymorphism contributes to resistance against osimertinib, a third-generation EGFR-TKI. In addition, we determined the efficacy of a histone deacetylase (HDAC) inhibitor, vorinostat, against this form of resistance and elucidated the underlying mechanism.Experimental Design: We used EGFR-mutated NSCLC cell lines, which were either heterozygous or homozygous for the BIM deletion polymorphism, to evaluate the effect of osimertinib in vitro and in vivo. Protein expression was examined by Western blotting. Alternative splicing of BIM mRNA was analyzed by RT-PCR.Results: EGFR-mutated NSCLC cell lines with the BIM deletion polymorphism exhibited apoptosis resistance to osimertinib in a polymorphism dosage–dependent manner, and this resistance was overcome by combined use with vorinostat. Experiments with homozygous BIM deletion–positive cells revealed that vorinostat affected the alternative splicing of BIM mRNA in the deletion allele, increased the expression of active BIM protein, and thereby induced apoptosis in osimertinib-treated cells. These effects were mediated predominantly by HDAC3 inhibition. In xenograft models, combined use of vorinostat with osimertinib could regress tumors in EGFR-mutated NSCLC cells homozygous for the BIM deletion polymorphism. Moreover, this combination could induce apoptosis even when tumor cells acquired EGFR-T790M mutations.Conclusions: These findings indicate the importance of developing HDAC3-selective inhibitors, and their combined use with osimertinib, for treating EGFR-mutated lung cancers carrying the BIM deletion polymorphism. Clin Cancer Res; 23(12); 3139–49. ©2016 AACR.Usage metrics
Keywords
Licence
Exports
RefWorksRefWorks
BibTeXBibTeX
Ref. managerRef. manager
EndnoteEndnote
DataCiteDataCite
NLMNLM
DCDC