American Association for Cancer Research
Browse

Figure S5 from IKKβ-Mediated Resistance to Skin Cancer Development Is Ink4a/Arf-Dependent

Download (332.24 kB)
figure
posted on 2023-04-03, 17:28 authored by Angustias Page, Ana Bravo, Cristian Suarez-Cabrera, Josefa P. Alameda, M. Llanos Casanova, Corina Lorz, Carmen Segrelles, José C. Segovia, Jesús M. Paramio, Manuel Navarro, Angel Ramirez

Study of SCCs in Ink4a/ArfKO background.

Funding

FEDER

History

ARTICLE ABSTRACT

IKKβ (encoded by IKBKB) is a protein kinase that regulates the activity of numerous proteins important in several signaling pathways, such as the NF-κB pathway. IKKβ exerts a protumorigenic role in several animal models of lung, hepatic, intestinal, and oral cancer. In addition, genomic and proteomic studies of human tumors also indicate that IKBKB gene is amplified or overexpressed in multiple tumor types. Here, the relevance of IKKβ in skin cancer was determined by performing carcinogenesis studies in animal models overexpressing IKKβ in the basal skin layer. IKKβ overexpression resulted in a striking resistance to skin cancer development and an increased expression of several tumor suppressor proteins, such as p53, p16, and p19. Mechanistically, this skin tumor–protective role of IKKβ is independent of p53, but dependent on the activity of the Ink4a/Arf locus. Interestingly, in the absence of p16 and p19, IKKβ-increased expression favors the appearance of cutaneous spindle cell–like squamous cell carcinomas, which are highly aggressive tumors. These results reveal that IKKβ activity prevents skin tumor development, and shed light on the complex nature of IKKβ effects on cancer progression, as IKKβ can both promote and prevent carcinogenesis depending on the cell type or molecular context.Implications: The ability of IKKβ to promote or prevent carcinogenesis suggests the need for further evaluation when targeting this protein. Mol Cancer Res; 15(9); 1255–64. ©2017 AACR.

Usage metrics

    Molecular Cancer Research

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC