American Association for Cancer Research
Browse

Figure S2 from Host IDO2 Gene Status Influences Tumor Progression and Radiotherapy Response in KRAS-Driven Sporadic Pancreatic Cancers

Download (573.43 kB)
figure
posted on 2023-03-31, 21:30 authored by Avinoam Nevler, Alexander J. Muller, Erika Sutanto-Ward, James B. DuHadaway, Kei Nagatomo, Eric Londin, Kevin O'Hayer, Joseph A. Cozzitorto, Harish Lavu, Theresa P. Yeo, Mark Curtis, Tatiana Villatoro, Benjamin E. Leiby, Laura Mandik-Nayak, Jordan M. Winter, Charles J. Yeo, George C. Prendergast, Jonathan R. Brody

Bar graphs (black and white line and dot drawing)

Funding

NIH

TJU

History

ARTICLE ABSTRACT

Heritable genetic variations can affect the inflammatory tumor microenvironment, which can ultimately affect cancer susceptibility and clinical outcomes. Recent evidence indicates that IDO2, a positive modifier in inflammatory disease models, is frequently upregulated in pancreatic ductal adenocarcinoma (PDAC). A unique feature of IDO2 in humans is the high prevalence of two inactivating single-nucleotide polymorphisms (SNP), which affords the opportunity to carry out loss-of-function studies directly in humans. In this study, we sought to address whether genetic loss of IDO2 may influence PDAC development and responsiveness to treatment.Experimental Design: Transgenic Ido2+/+ and Ido2−/− mice in which oncogenic KRAS is activated in pancreatic epithelial cells were evaluated for PDAC. Two patient data sets (N = 200) were evaluated for the two IDO2-inactivating SNPs together with histologic, RNA expression, and clinical survival data. PDAC development was notably decreased in the Ido2−/− mice (30% vs. 10%, P < 0.05), with a female predominance similar to the association observed for one of the human SNPs. In patients, the biallelic occurrence of either of the two IDO2-inactivating SNPs was significantly associated with markedly improved disease-free survival in response to adjuvant radiotherapy (P < 0.01), a treatment modality that has been highly debated due to its variable efficacy. The results of this study provide genetic support for IDO2 as a contributing factor in PDAC development and argue that IDO2 genotype analysis has the immediate potential to influence the PDAC care decision-making process through stratification of those patients who stand to benefit from adjuvant radiotherapy.

Usage metrics

    Clinical Cancer Research

    Categories

    Keywords

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC