American Association for Cancer Research
Browse
00085472can180270-sup-196124_2_supp_4783353_p9cv8c.pptx (33.64 kB)

Fig. S6 from Reciprocal Regulation of DUSP9 and DUSP16 Expression by HIF1 Controls ERK and p38 MAP Kinase Activity and Mediates Chemotherapy-Induced Breast Cancer Stem Cell Enrichment

Download (33.64 kB)
figure
posted on 2023-03-31, 01:41 authored by Haiquan Lu, Linh Tran, Youngrok Park, Ivan Chen, Jie Lan, Yangyiran Xie, Gregg L. Semenza

DUSP9 and DUSP16 reciprocally regulate paclitaxel-induced BCSC enrichment in SUM-149 orthotopic tumors.

Funding

Department of Defense

American Cancer Society

Cindy Rosencrans Foundation

History

ARTICLE ABSTRACT

Triple-negative breast cancer (TNBC) has a poor prognosis due to its aggressive characteristics and lack of targeted therapies. Cytotoxic chemotherapy may reduce tumor bulk, but leaves residual disease due to the persistence of chemotherapy-resistant breast cancer stem cells (BCSC), which are critical for tumor recurrence and metastasis. Here, we demonstrate that hypoxia-inducible factor (HIF)-1–dependent regulation of mitogen-activated protein kinase (MAPK) signaling pathways contributes to chemotherapy-induced BCSC enrichment. Chemotherapy increased DUSP9 expression and decreased DUSP16 expression in a HIF1–dependent manner, leading to inhibition of ERK and activation of p38 signaling pathways, respectively. Inhibition of ERK caused transcriptional induction of the pluripotency factor Nanog through decreased inactivating phosphorylation of FoxO3, while activation of p38 stabilized Nanog and Klf4 mRNA through increased inactivating phosphorylation of RNA-binding protein ZFP36L1, both of which promoted specification of the BCSC phenotype. Inhibition of HIF1 or p38 signaling blocked chemotherapy-induced pluripotency factor expression and BCSC enrichment. These surprising results delineate a mechanism by which a transcription factor switches cells from ERK to p38 signaling in response to chemotherapy and suggest that therapeutic targeting of HIF1 or the p38 pathway in combination with chemotherapy will block BCSC enrichment and improve outcome in TNBC.Significance: These findings provide a molecular mechanism that may account for the increased relapse rate of women with TNBC who are treated with cytotoxic chemotherapy and suggest that combining chemotherapy with an inhibitor of HIF1 or p38 activity may increase patient survival. Cancer Res; 78(15); 4191–202. ©2018 AACR.

Usage metrics

    Cancer Research

    Licence

    Exports