American Association for Cancer Research
Browse
- No file added yet -

Table S4 from De Novo Purine Metabolism is a Metabolic Vulnerability of Cancers with Low p16 Expression

Download (37.36 MB)
dataset
posted on 2024-05-02, 14:20 authored by Naveen Kumar Tangudu, Raquel Buj, Hui Wang, Jiefei Wang, Aidan R. Cole, Apoorva Uboveja, Richard Fang, Amandine Amalric, Baixue Yang, Adam Chatoff, Claudia V. Crispim, Peter Sajjakulnukit, Maureen A. Lyons, Kristine Cooper, Nadine Hempel, Costas A. Lyssiotis, Uma R. Chandran, Nathaniel W. Snyder, Katherine M. Aird

CRISPR screen results for mouse Yumm5.2 cells

Funding

HHS | NIH | National Cancer Institute (NCI)

HHS | NIH | National Institute of General Medical Sciences (NIGMS)

Melanoma Research Foundation (MRF)

Ovarian Cancer Research Alliance (OCRA)

History

ARTICLE ABSTRACT

p16 is a tumor suppressor encoded by the CDKN2A gene whose expression is lost in approximately 50% of all human cancers. In its canonical role, p16 inhibits the G1–S-phase cell cycle progression through suppression of cyclin-dependent kinases. Interestingly, p16 also has roles in metabolic reprogramming, and we previously published that loss of p16 promotes nucleotide synthesis via the pentose phosphate pathway. However, the broader impact of p16/CDKN2A loss on other nucleotide metabolic pathways and potential therapeutic targets remains unexplored. Using CRISPR knockout libraries in isogenic human and mouse melanoma cell lines, we determined several nucleotide metabolism genes essential for the survival of cells with loss of p16/CDKN2A. Consistently, many of these genes are upregulated in melanoma cells with p16 knockdown or endogenously low CDKN2A expression. We determined that cells with low p16/CDKN2A expression are sensitive to multiple inhibitors of de novo purine synthesis, including antifolates. Finally, tumors with p16 knockdown were more sensitive to the antifolate methotrexate in vivo than control tumors. Together, our data provide evidence to reevaluate the utility of these drugs in patients with p16/CDKN2Alow tumors as loss of p16/CDKN2A may provide a therapeutic window for these agents. Antimetabolites were the first chemotherapies, yet many have failed in the clinic due to toxicity and poor patient selection. Our data suggest that p16 loss provides a therapeutic window to kill cancer cells with widely-used antifolates with relatively little toxicity.