posted on 2023-11-15, 08:20authored byJing Shi, Tao Jiao, Qian Guo, Weining Weng, Linjie Ma, Qing Zhang, Lijun Wang, Jianjian Zhang, Caiwei Chen, Yaling Huang, Mingqiao Wang, Rong Pan, Yanfang Tang, Wenhao Hu, Tao Meng, Shu-Hui Liu, Jun Guo, Yan Kong, Xun Meng
Summary of repeated dose toxicity studies in monkeys
Funding
National Natural Science Foundation of China (NSFC)
National Key Research and Development Program of China (NKPs)
History
ARTICLE ABSTRACT
Recent advances in targeted therapy and immunotherapy have substantially improved the treatment of melanoma. However, therapeutic strategies are still needed for unresponsive or treatment-relapsed patients with melanoma. To discover antibody–drug conjugate (ADC)–tractable cell surface targets for melanoma, we developed an atlas of melanoma cell surface–binding antibodies (pAb) using a proteome-scale antibody array platform. Target identification of pAbs led to development of melanoma cell killing ADCs against LGR6, TRPM1, ASAP1, and MUC18, among others. MUC18 was overexpressed in both tumor cells and tumor-infiltrating blood vessels across major melanoma subtypes, making it a potential dual-compartment and universal melanoma therapeutic target. AMT-253, an MUC18-directed ADC based on topoisomerase I inhibitor exatecan and a self-immolative T moiety, had a higher therapeutic index compared with its microtubule inhibitor–based counterpart and favorable pharmacokinetics and tolerability in monkeys. AMT-253 exhibited MUC18-specific cytotoxicity through DNA damage and apoptosis and a strong bystander killing effect, leading to potent antitumor activities against melanoma cell line and patient-derived xenograft models. Tumor vasculature targeting by a mouse MUC18-specific antibody–T1000-exatecan conjugate inhibited tumor growth in human melanoma xenografts. Combination therapy of AMT-253 with an antiangiogenic agent generated higher efficacy than single agent in a mucosal melanoma model. Beyond melanoma, AMT-253 was also efficacious in a wide range of MUC18-expressing solid tumors. Efficient target/antibody discovery in combination with the T moiety–exatecan linker–payload exemplified here may facilitate discovery of new ADC to improve cancer treatment.
Discovery of melanoma-targeting antibodies using a proteome-scale array and use of a cutting-edge linker–payload system led to development of a MUC18-targeting antibody–exatecan conjugate with clinical potential for treating major melanoma subtypes.