Table S1 from Proteomic Analysis of CSF from Patients with Leptomeningeal Melanoma Metastases Identifies Signatures Associated with Disease Progression and Therapeutic Resistance
posted on 2023-03-31, 22:10authored byInna Smalley, Vincent Law, Clayton Wyatt, Brittany Evernden, Bin Fang, John M. Koomen, Eric A. Welsh, Robert J.B. Macaulay, Peter A. Forsyth, Keiran S.M. Smalley
TMT Batch Setup
Funding
NIH
Department of Defense
Bankhead-Coley
NCI
History
ARTICLE ABSTRACT
The development of leptomeningeal melanoma metastases (LMM) is a rare and devastating complication of the late-stage disease, for which no effective treatments exist. Here, we performed a multi-omics analysis of the cerebrospinal fluid (CSF) from patients with LMM to determine how the leptomeningeal microenvironment shapes the biology and therapeutic responses of melanoma cells.
A total of 45 serial CSF samples were collected from 16 patients, 8 of these with confirmed LMM. Of those with LMM, 7 had poor survival (<4 months) and one was an extraordinary responder (still alive with survival >35 months). CSF samples were analyzed by mass spectrometry and incubated with melanoma cells that were subjected to RNA sequencing (RNA-seq) analysis. Functional assays were performed to validate the pathways identified.
Mass spectrometry analyses showed the CSF of most patients with LMM to be enriched for pathways involved in innate immunity, protease-mediated damage, and IGF-related signaling. All of these were anticorrelated in the extraordinary responder. RNA-seq analysis showed CSF to induce PI3K/AKT, integrin, B-cell activation, S-phase entry, TNFR2, TGFβ, and oxidative stress responses in the melanoma cells. ELISA assays confirmed that TGFβ expression increased in the CSF of patients progressing with LMM. CSF from poorly responding patients conferred tolerance to BRAF inhibitor therapy in apoptosis assays.
These analyses identified proteomic/transcriptional signatures in the CSF of patients who succumbed to LMM. We further showed that the CSF from patients with LMM has the potential to modulate BRAF inhibitor responses and may contribute to drug resistance.See related commentary by Glitza Oliva and Tawbi, p. 2083