American Association for Cancer Research

sorry, we can't preview this file

cd-22-1200_table_s15_suppst15.xlsx (199.81 kB)

Table S15 from Spatial Transcriptomics of Intraductal Papillary Mucinous Neoplasms of the Pancreas Identifies NKX6-2 as a Driver of Gastric Differentiation and Indolent Biological Potential

Download (199.81 kB)
posted on 2023-08-04, 08:40 authored by Marta Sans, Yuki Makino, Jimin Min, Kimal I. Rajapakshe, Michele Yip-Schneider, C. Max Schmidt, Mark W. Hurd, Jared K. Burks, Javier A. Gomez, Fredrik I. Thege, Johannes F. Fahrmann, Robert A. Wolff, Michael P. Kim, Paola A. Guerrero, Anirban Maitra

Predicted NKX6-2 targets and transcription factors associated with NKX6-2 expression evaluated by GENIE3.


Cancer Prevention and Research Institute of Texas (CPRIT)

National Cancer Institute (NCI)

United States Department of Health and Human Services

Find out more...



Intraductal papillary mucinous neoplasms (IPMN) of the pancreas are bona fide precursor lesions of pancreatic ductal adenocarcinoma (PDAC). The most common subtype of IPMNs harbors a gastric foveolar-type epithelium, and these low-grade mucinous neoplasms are harbingers of IPMNs with high-grade dysplasia and cancer. The molecular underpinning of gastric differentiation in IPMNs is unknown, although identifying drivers of this indolent phenotype might enable opportunities for intercepting progression to high-grade IPMN and cancer. We conducted spatial transcriptomics on a cohort of IPMNs, followed by orthogonal and cross-species validation studies, which established the transcription factor NKX6-2 as a key determinant of gastric cell identity in low-grade IPMNs. Loss of NKX6-2 expression is a consistent feature of IPMN progression, while reexpression of Nkx6-2 in murine IPMN lines recapitulates the aforementioned gastric transcriptional program and glandular morphology. Our study identifies NKX6-2 as a previously unknown transcription factor driving indolent gastric differentiation in IPMN pathogenesis. Identification of the molecular features driving IPMN development and differentiation is critical to prevent cancer progression and enhance risk stratification. We used spatial profiling to characterize the epithelium and microenvironment of IPMN, which revealed a previously unknown link between NKX6-2 and gastric differentiation, the latter associated with indolent biological potential.See related commentary by Ben-Shmuel and Scherz-Shouval, p. 1768.This article is highlighted in the In This Issue feature, p. 1749

Usage metrics

    Cancer Discovery





    Ref. manager