posted on 2024-05-06, 14:20authored byAditya Kulkarni, Jianli Zhou, Neha Biyani, Umesh Kathad, Partha P. Banerjee, Shiv Srivastava, Zsombor Prucsi, Kamil Solarczyk, Kishor Bhatia, Reginald B. Ewesuedo, Panna Sharma
LP-184 IC50 in LMS cell lines. IC50 was calculated from 72-hour cell viability assay. PTGR1 RNA expression was retrieved from the DepMap Public 23Q2 Primary Files. HR activity of these cell lines was reported in ref. 34
Funding
n/a
History
ARTICLE ABSTRACT
Homologous recombination (HR)-related gene alterations are present in a significant subset of prostate, breast, ovarian, pancreatic, lung, and colon cancers rendering these tumors as potential responders to specific DNA damaging agents. A small molecule acylfulvene prodrug, LP-184, metabolizes to an active compound by the oxidoreductase activity of enzyme prostaglandin reductase 1 (PTGR1), which is frequently elevated in multiple solid tumor types. Prior work demonstrated that cancer cell lines deficient in a spectrum of DNA damage repair (DDR) pathway genes show increased susceptibility to LP-184. Here, we investigated the potential of LP-184 in targeting multiple tumors with impaired HR function and its mechanism of action as a DNA damaging agent. LP-184 induced elevated DNA double-strand breaks in HR deficient (HRD) cancer cells. Depletion of key HR components BRCA2 or ataxia telangiectasia mutated (ATM) in cancer cells conferred up to 12-fold increased sensitivity to the LP-184. LP-184 showed nanomolar potency in a diverse range of HRD cancer models, including prostate cancer organoids, leiomyosarcoma cell lines, and patient-derived tumor graft models of lung, pancreatic, and prostate cancers. LP-184 demonstrated complete, durable tumor regression in 10 patient-derived xenograft (PDX) models of HRD triple-negative breast cancer (TNBC) including those resistant to PARP inhibitors (PARPi). LP-184 further displayed strong synergy with PARPi in ovarian and prostate cancer cell lines as well as in TNBC PDX models. These preclinical findings illustrate the potential of LP-184 as a pan-HRD cancer therapeutic. Taken together, our results support continued clinical evaluation of LP-184 in a large subset of HRD solid tumors.
New agents with activity against DDR-deficient solid tumors refractory to standard-of-care therapies are needed. We report multiple findings supporting the potential for LP-184, a novel alkylating agent with three FDA orphan drug designations, to fill this void clinically: strong nanomolar potency; sustained, durable regression of solid tumor xenografts; synthetic lethality with HR defects. LP-184 adult phase IA trial to assess safety in advanced solid tumors is ongoing.