Supplementary excel file from Transcriptomic Analysis of Diffuse Intrinsic Pontine Glioma (DIPG) Identifies a Targetable ALDH-Positive Subset of Highly Tumorigenic Cancer Stem-like Cells
posted on 2023-04-03, 19:41authored byRachel K. Surowiec, Sarah F. Ferris, April Apfelbaum, Carlos Espinoza, Ranjit K. Mehta, Karamoja Monchamp, Veerin R. Sirihorachai, Karan Bedi, Mats Ljungman, Stefanie Galban
<p>Combined pathway analyses of sequencing data</p>
Understanding the cancer stem cell (CSC) landscape in diffuse intrinsic pontine glioma (DIPG) is desperately needed to address treatment resistance and identify novel therapeutic approaches. Patient-derived DIPG cells demonstrated heterogeneous expression of aldehyde dehydrogenase (ALDH) and CD133 by flow cytometry. Transcriptome-level characterization identified elevated mRNA levels of MYC, E2F, DNA damage repair (DDR) genes, glycolytic metabolism, and mTOR signaling in ALDH+ compared with ALDH−, supporting a stem-like phenotype and indicating a druggable target. ALDH+ cells demonstrated increased proliferation, neurosphere formation, and initiated tumors that resulted in decreased survival when orthotopically implanted. Pharmacologic MAPK/PI3K/mTOR targeting downregulated MYC, E2F, and DDR mRNAs and reduced glycolytic metabolism. In vivo PI3K/mTOR targeting inhibited tumor growth in both flank and an ALDH+ orthotopic tumor model likely by reducing cancer stemness. In summary, we describe existence of ALDH+ DIPGs with proliferative properties due to increased metabolism, which may be regulated by the microenvironment and likely contributing to drug resistance and tumor recurrence.
Characterization of ALDH+ DIPGs coupled with targeting MAPK/PI3K/mTOR signaling provides an impetus for molecularly targeted therapy aimed at addressing the CSC phenotype in DIPG.