American Association for Cancer Research
Browse
- No file added yet -

Supplementary Table from Combinatorial Inactivation of Tumor Suppressors Efficiently Initiates Lung Adenocarcinoma with Therapeutic Vulnerabilities

Download (88.81 kB)
dataset
posted on 2023-03-31, 05:00 authored by Maryam Yousefi, Gábor Boross, Carly Weiss, Christopher W. Murray, Jess D. Hebert, Hongchen Cai, Emily L. Ashkin, Saswati Karmakar, Laura Andrejka, Leo Chen, Minwei Wang, Min K. Tsai, Wen-Yang Lin, Chuan Li, Pegah Yakhchalian, Caterina I. Colón, Su-Kit Chew, Pauline Chu, Charles Swanton, Christian A. Kunder, Dmitri A. Petrov, Monte M. Winslow
Supplementary Table from Combinatorial Inactivation of Tumor Suppressors Efficiently Initiates Lung Adenocarcinoma with Therapeutic Vulnerabilities

Funding

NIH

Tobacco-Related Disease Research Program Postdoctoral Fellowships

AACR Postdoctoral fellowship

Damon Runyon Cancer Research Foundation

PHS

HHMI Gilliam Fellowship for Advanced Study

History

ARTICLE ABSTRACT

Lung cancer is the leading cause of cancer death worldwide, with lung adenocarcinoma being the most common subtype. Many oncogenes and tumor suppressor genes are altered in this cancer type, and the discovery of oncogene mutations has led to the development of targeted therapies that have improved clinical outcomes. However, a large fraction of lung adenocarcinomas lacks mutations in known oncogenes, and the genesis and treatment of these oncogene-negative tumors remain enigmatic. Here, we perform iterative in vivo functional screens using quantitative autochthonous mouse model systems to uncover the genetic and biochemical changes that enable efficient lung tumor initiation in the absence of oncogene alterations. Generation of hundreds of diverse combinations of tumor suppressor alterations demonstrates that inactivation of suppressors of the RAS and PI3K pathways drives the development of oncogene-negative lung adenocarcinoma. Human genomic data and histology identified RAS/MAPK and PI3K pathway activation as a common feature of an event in oncogene-negative human lung adenocarcinomas. These Onc-negativeRAS/PI3K tumors and related cell lines are vulnerable to pharmacologic inhibition of these signaling axes. These results transform our understanding of this prevalent yet understudied subtype of lung adenocarcinoma. To address the large fraction of lung adenocarcinomas lacking mutations in proto-oncogenes for which targeted therapies are unavailable, this work uncovers driver pathways of oncogene-negative lung adenocarcinomas and demonstrates their therapeutic vulnerabilities.

Usage metrics

    Cancer Research

    Categories

    Keywords

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC