American Association for Cancer Research
Browse
10780432ccr101092-sup-supplementary_table_s2.xls (26.5 kB)

Supplementary Table S2 from Transcriptional Profiling of Polycythemia Vera Identifies Gene Expression Patterns Both Dependent and Independent from the Action of JAK2V617F

Download (26.5 kB)
dataset
posted on 2023-03-31, 16:07 authored by Windy Berkofsky-Fessler, Monica Buzzai, Marianne K-H. Kim, Steven Fruchtman, Vesna Najfeld, Dong-Joon Min, Fabricio F. Costa, Jared M. Bischof, Marcelo B. Soares, Melanie Jane McConnell, Weijia Zhang, Ross Levine, D. Gary Gilliland, Raffaele Calogero, Jonathan D. Licht

Supplementary Table S2.

History

ARTICLE ABSTRACT

Purpose: To understand the changes in gene expression in polycythemia vera (PV) progenitor cells and their relationship to JAK2V617F.Experimental Design: Messenger RNA isolated from CD34+ cells from nine PV patients and normal controls was profiled using Affymetrix arrays. Gene expression change mediated by JAK2V617F was determined by profiling CD34+ cells transduced with the kinase and by analysis of leukemia cell lines harboring JAK2V617F, treated with an inhibitor.Results: A PV expression signature was enriched for genes involved in hematopoietic development, inflammatory responses, and cell proliferation. By quantitative reverse transcription-PCR, 23 genes were consistently deregulated in all patient samples. Several of these genes such as WT1 and KLF4 were regulated by JAK2, whereas others such as NFIB and EVI1 seemed to be deregulated in PV by a JAK2-independent mechanism. Using cell line models and comparing gene expression profiles of cell lines and PV CD34+ PV specimens, we have identified panels of 14 JAK2-dependent genes and 12 JAK2-independent genes. These two 14- and 12-gene sets could separate not only PV from normal CD34+ specimens, but also other MPN such as essential thrombocytosis and primary myelofibrosis from their normal counterparts.Conclusions: A subset of the aberrant gene expression in PV progenitor cells can be attributed to the action of the mutant kinase, but there remain a significant number of genes characteristic of the disease but deregulated by as yet unknown mechanisms. Genes deregulated in PV as a result of the action of JAK2V617F or independent of the kinase may represent other targets for therapy. Clin Cancer Res; 16(17); 4339–52. ©2010 AACR.

Usage metrics

    Clinical Cancer Research

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC