American Association for Cancer Research
Browse
00085472can070765-sup-supplemental_table_2.xls (57 kB)

Supplementary Table 2 from Breast Cancer Expressing the Activated HER2/neu Is Sensitive to Gefitinib In vitro and In vivo and Acquires Resistance through a Novel Point Mutation in the HER2/neu

Download (57 kB)
dataset
posted on 2023-03-30, 17:21 authored by Marie P. Piechocki, George H. Yoo, Susan K. Dibbley, Fulvio Lonardo
Supplementary Table 2 from Breast Cancer Expressing the Activated HER2/neu Is Sensitive to Gefitinib In vitro and In vivo and Acquires Resistance through a Novel Point Mutation in the HER2/neu

History

ARTICLE ABSTRACT

The HER2/neu oncogene is an important diagnostic and prognostic factor and therapeutic target in breast and other cancers. We developed and characterized a breast cancer cell line (Bam1a) that overexpresses the activated HER2/neu and ErbB-3 and has a gene expression profile consistent with the ErbB-2 genetic signature. We evaluated the effects of the epidermal growth factor receptor (EGFR)/HER2 inhibitor, gefitinib, on this breast tumor line in vitro and in vivo. We characterized the effects of gefitinib on EGFR, HER2, and ErbB-3 phosphorylation by Western blot and determined the effects on downstream signaling through growth, survival, and stress pathways and the effect on proliferation, cell cycle, and apoptosis. Gefitinib treatment diminished phosphorylation of the ErbB-3 > EGFR > HER2/neu and signal transducers and activators of transcriptions in a dose-dependent fashion. Downstream mitogenic signaling through mitogen-activated protein (MAP)/extracellular signal regulated kinase kinase, p44/42 MAP kinase (MAPK) and stress signaling through c-Jun-NH2-kinase (JNK) 1 and c-Jun was impaired (1 μmol/L, 4–24 h), leading to cytostasis and cell cycle arrest within 24 h by decreased cyclin D1, cyclin B1, and pSer795Rb and increased p27. Proliferation and colony formation were inhibited at 0.5 and 1 μmol/L, respectively, and correlated with altered gene expression profiles. Diminished survival signaling through Akt, induction of bim, loss of connexin43, and decreased production of vascular endothelial growth factor-D preceded caspase-3 and poly(ADP)ribose polymerase (PARP) cleavage and apoptosis (>50% 2 μmol/L, 48 h). Oral administration of gefitinib was able to prevent the outgrowth of Bam1a tumor cells from palpable lesions, shrink established tumors, eliminate HER2 and HER3 phosphorylation, and decrease MAPK and Akt signaling in vivo. A variant of the Bam1a cell line, IR-5, with acquired ability to grow in 5 μmol/L gefitinib was developed and characterized. IR-5 bears a novel point mutation in the HER2/neu that corresponds to a L726I in the ATP-binding pocket and correlates with a log decrease in sensitivity to gefitinib, increased heterodimerization with EGFR and HER3, and impaired down-regulation. Gene expression profiling of IR-5 showed increased expression of EMP-1, NOTCH-1, FLT-1, PDGFB, and several other genes that may contribute to the resistant phenotype and sustain signaling through MAPK and Akt. This model will be useful in understanding the differences between intrinsic drug sensitivity and acquired resistance in the context of therapeutic strategies that target oncogene addicted diseases. [Cancer Res 2007;67(14):6825–43]

Usage metrics

    Cancer Research

    Categories

    Keywords

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC