American Association for Cancer Research
Browse
10780432ccr171586-sup-184262_2_supp_4384572_zz7lml.xlsx (17.66 kB)

Supplementary Table 1 from Whole-Exome Sequencing of Cell-Free DNA Reveals Temporo-spatial Heterogeneity and Identifies Treatment-Resistant Clones in Neuroblastoma

Download (17.66 kB)
dataset
posted on 2023-03-31, 19:41 authored by Mathieu Chicard, Leo Colmet-Daage, Nathalie Clement, Adrien Danzon, Mylène Bohec, Virginie Bernard, Sylvain Baulande, Angela Bellini, Paul Deveau, Gaëlle Pierron, Eve Lapouble, Isabelle Janoueix-Lerosey, Michel Peuchmaur, Nadège Corradini, Anne Sophie Defachelles, Dominique Valteau-Couanet, Jean Michon, Valérie Combaret, Olivier Delattre, Gudrun Schleiermacher

Detailed Clinical and Sequencing Data of all Cases.

Funding

Annenberg Foundation

Nelia and Amadeo Barletta Foundation

Association Hubert Gouin Enfance et Cancer

Associations Enfants et Santé

SiRIC/INCa

CEST of Institute Curie

PHRC

Agence Nationale de la Recherche

Canceropole Ile-de-France

SiRIC-Curie program

History

ARTICLE ABSTRACT

Purpose: Neuroblastoma displays important clinical and genetic heterogeneity, with emergence of new mutations at tumor progression.Experimental Design: To study clonal evolution during treatment and follow-up, an innovative method based on circulating cell-free DNA (cfDNA) analysis by whole-exome sequencing (WES) paired with target sequencing was realized in sequential liquid biopsy samples of 19 neuroblastoma patients.Results: WES of the primary tumor and cfDNA at diagnosis showed overlap of single-nucleotide variants (SNV) and copy number alterations, with 41% and 93% of all detected alterations common to the primary neuroblastoma and cfDNA. CfDNA WES at a second time point indicated a mean of 22 new SNVs for patients with progressive disease. Relapse-specific alterations included genes of the MAPK pathway and targeted the protein kinase A signaling pathway. Deep coverage target sequencing of intermediate time points during treatment and follow-up identified distinct subclones. For 17 seemingly relapse-specific SNVs detected by cfDNA WES at relapse but not tumor or cfDNA WES at diagnosis, deep coverage target sequencing detected these alterations in minor subclones, with relapse-emerging SNVs targeting genes of neuritogenesis and cell cycle. Furthermore a persisting, resistant clone with concomitant disappearance of other clones was identified by a mutation in the ubiquitin protein ligase HERC2.Conclusions: Modelization of mutated allele fractions in cfDNA indicated distinct patterns of clonal evolution, with either a minor, treatment-resistant clone expanding to a major clone at relapse, or minor clones collaborating toward tumor progression. Identification of treatment-resistant clones will enable development of more efficient treatment strategies. Clin Cancer Res; 24(4); 939–49. ©2017 AACR.

Usage metrics

    Clinical Cancer Research

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC