American Association for Cancer Research
Browse

Free Article from Microenvironmental Independence Associated with Tumor Progression

Download (0.4 kB)
dataset
posted on 2023-03-30, 19:14 authored by Alexander R.A. Anderson, Mohamed Hassanein, Kevin M. Branch, Jenny Lu, Nichole A. Lobdell, Julie Maier, David Basanta, Brandy Weidow, Archana Narasanna, Carlos L. Arteaga, Albert B. Reynolds, Vito Quaranta, Lourdes Estrada, Alissa M. Weaver
Free Article from Microenvironmental Independence Associated with Tumor Progression

History

ARTICLE ABSTRACT

Tumor-microenvironment interactions are increasingly recognized to influence tumor progression. To understand the competitive dynamics of tumor cells in diverse microenvironments, we experimentally parameterized a hybrid discrete-continuum mathematical model with phenotypic trait data from a set of related mammary cell lines with normal, transformed, or tumorigenic properties. Surprisingly, in a resource-rich microenvironment, with few limitations on proliferation or migration, transformed (but not tumorigenic) cells were most successful and outcompeted other cell types in heterogeneous tumor simulations. Conversely, constrained microenvironments with limitations on space and/or growth factors gave a selective advantage to phenotypes derived from tumorigenic cell lines. Analysis of the relative performance of each phenotype in constrained versus unconstrained microenvironments revealed that, although all cell types grew more slowly in resource-constrained microenvironments, the most aggressive cells were least affected by microenvironmental constraints. A game theory model testing the relationship between microenvironment resource availability and competitive cellular dynamics supports the concept that microenvironmental independence is an advantageous cellular trait in resource-limited microenvironments. [Cancer Res 2009;69(22):8797–806]

Usage metrics

    Cancer Research

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC