American Association for Cancer Research
15417786mcr180325-sup-199590_2_supp_4938202_pcv6n9.xlsx (290.27 kB)

Data File S1 from Alectinib Resistance in ALK-Rearranged Lung Cancer by Dual Salvage Signaling in a Clinically Paired Resistance Model

Download (290.27 kB)
posted on 2023-04-03, 17:23 authored by Takahiro Tsuji, Hiroaki Ozasa, Wataru Aoki, Shunsuke Aburaya, Tomoko Funazo, Koh Furugaki, Yasushi Yoshimura, Hitomi Ajimizu, Ryoko Okutani, Yuto Yasuda, Takashi Nomizo, Kiyoshi Uemasu, Koichi Hasegawa, Hironori Yoshida, Yoshitaka Yagi, Hiroki Nagai, Yuichi Sakamori, Mitsuyoshi Ueda, Toyohiro Hirai, Young Hak Kim

Data sets of the phosphoproteome analysis in KTOR1 and KTOR1-RE cells


Japan Society for the Promotion of Science



The mechanisms responsible for the development of resistance to alectinib, a second-generation anaplastic lymphoma kinase (ALK) inhibitor, are still unclear, and few cell lines are currently available for investigating ALK-rearranged lung cancer. To identify the mechanisms underlying acquired resistance to alectinib, two patient-derived cell lines were established from an alectinib-naïve ALK-rearranged lung cancer and then after development of alectinib resistance. The properties acquired during treatments were detected by comparisons of the two cell lines, and then functional analyses were performed. Coactivation of c-Src and MET was identified after the development of alectinib resistance. Combinatorial therapy against Src and MET significantly restored alectinib sensitivity in vitro (17.2-fold). Increased apoptosis, reduction of tumor volume, and inhibition of MAPK and PI3K/AKT signaling molecules for proliferation and survival were observed when the three kinases (Src, MET, and ALK) were inhibited. A patient-derived xenograft from the alectinib-resistant cells indicated that combination therapy with a saracatinib and crizotinib significantly decreased tumor size in vivo. To confirm the generality, a conventional alectinib-resistant cell line model (H2228-AR1S) was established from NCI-H2228 cells (EML4-ALK variant 3a/b). In H2228-AR1S, combination inhibition of Src and MET also restored alectinib sensitivity. These data reveal that dual salvage signaling from MET and Src is a potential therapeutic target in alectinib-resistant patients. This study demonstrates the feasibility to elucidate personalized drug-resistance mechanisms from individual patient samples.

Usage metrics

    Molecular Cancer Research



    Ref. manager